| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cznrng.y |
|- Y = ( Z/nZ ` N ) |
| 2 |
|
cznrng.b |
|- B = ( Base ` Y ) |
| 3 |
|
cznrng.x |
|- X = ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) |
| 4 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 5 |
4
|
adantr |
|- ( ( N e. NN /\ C e. B ) -> N e. NN0 ) |
| 6 |
1
|
zncrng |
|- ( N e. NN0 -> Y e. CRing ) |
| 7 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
| 8 |
|
ringabl |
|- ( Y e. Ring -> Y e. Abel ) |
| 9 |
5 6 7 8
|
4syl |
|- ( ( N e. NN /\ C e. B ) -> Y e. Abel ) |
| 10 |
3
|
fveq2i |
|- ( Base ` X ) = ( Base ` ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) ) |
| 11 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 12 |
|
basendxnmulrndx |
|- ( Base ` ndx ) =/= ( .r ` ndx ) |
| 13 |
11 12
|
setsnid |
|- ( Base ` Y ) = ( Base ` ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) ) |
| 14 |
10 13
|
eqtr4i |
|- ( Base ` X ) = ( Base ` Y ) |
| 15 |
3
|
fveq2i |
|- ( +g ` X ) = ( +g ` ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) ) |
| 16 |
|
plusgid |
|- +g = Slot ( +g ` ndx ) |
| 17 |
|
plusgndxnmulrndx |
|- ( +g ` ndx ) =/= ( .r ` ndx ) |
| 18 |
16 17
|
setsnid |
|- ( +g ` Y ) = ( +g ` ( Y sSet <. ( .r ` ndx ) , ( x e. B , y e. B |-> C ) >. ) ) |
| 19 |
15 18
|
eqtr4i |
|- ( +g ` X ) = ( +g ` Y ) |
| 20 |
14 19
|
ablprop |
|- ( X e. Abel <-> Y e. Abel ) |
| 21 |
9 20
|
sylibr |
|- ( ( N e. NN /\ C e. B ) -> X e. Abel ) |