Metamath Proof Explorer


Theorem cznabel

Description: The ring constructed from a Z/nZ structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses cznrng.y Y = /N
cznrng.b B = Base Y
cznrng.x X = Y sSet ndx x B , y B C
Assertion cznabel N C B X Abel

Proof

Step Hyp Ref Expression
1 cznrng.y Y = /N
2 cznrng.b B = Base Y
3 cznrng.x X = Y sSet ndx x B , y B C
4 nnnn0 N N 0
5 4 adantr N C B N 0
6 1 zncrng N 0 Y CRing
7 5 6 syl N C B Y CRing
8 crngring Y CRing Y Ring
9 ringabl Y Ring Y Abel
10 7 8 9 3syl N C B Y Abel
11 3 fveq2i Base X = Base Y sSet ndx x B , y B C
12 baseid Base = Slot Base ndx
13 basendxnmulrndx Base ndx ndx
14 12 13 setsnid Base Y = Base Y sSet ndx x B , y B C
15 11 14 eqtr4i Base X = Base Y
16 3 fveq2i + X = + Y sSet ndx x B , y B C
17 plusgid + 𝑔 = Slot + ndx
18 plusgndxnmulrndx + ndx ndx
19 17 18 setsnid + Y = + Y sSet ndx x B , y B C
20 16 19 eqtr4i + X = + Y
21 15 20 ablprop X Abel Y Abel
22 10 21 sylibr N C B X Abel