Description: The ring constructed from a Z/nZ structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cznrng.y | |
|
cznrng.b | |
||
cznrng.x | |
||
Assertion | cznabel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cznrng.y | |
|
2 | cznrng.b | |
|
3 | cznrng.x | |
|
4 | nnnn0 | |
|
5 | 4 | adantr | |
6 | 1 | zncrng | |
7 | 5 6 | syl | |
8 | crngring | |
|
9 | ringabl | |
|
10 | 7 8 9 | 3syl | |
11 | 3 | fveq2i | |
12 | baseid | |
|
13 | basendxnmulrndx | |
|
14 | 12 13 | setsnid | |
15 | 11 14 | eqtr4i | |
16 | 3 | fveq2i | |
17 | plusgid | |
|
18 | plusgndxnmulrndx | |
|
19 | 17 18 | setsnid | |
20 | 16 19 | eqtr4i | |
21 | 15 20 | ablprop | |
22 | 10 21 | sylibr | |