Metamath Proof Explorer


Theorem cznabel

Description: The ring constructed from a Z/nZ structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses cznrng.y Y=/N
cznrng.b B=BaseY
cznrng.x X=YsSetndxxB,yBC
Assertion cznabel NCBXAbel

Proof

Step Hyp Ref Expression
1 cznrng.y Y=/N
2 cznrng.b B=BaseY
3 cznrng.x X=YsSetndxxB,yBC
4 nnnn0 NN0
5 4 adantr NCBN0
6 1 zncrng N0YCRing
7 5 6 syl NCBYCRing
8 crngring YCRingYRing
9 ringabl YRingYAbel
10 7 8 9 3syl NCBYAbel
11 3 fveq2i BaseX=BaseYsSetndxxB,yBC
12 baseid Base=SlotBasendx
13 basendxnmulrndx Basendxndx
14 12 13 setsnid BaseY=BaseYsSetndxxB,yBC
15 11 14 eqtr4i BaseX=BaseY
16 3 fveq2i +X=+YsSetndxxB,yBC
17 plusgid +𝑔=Slot+ndx
18 plusgndxnmulrndx +ndxndx
19 17 18 setsnid +Y=+YsSetndxxB,yBC
20 16 19 eqtr4i +X=+Y
21 15 20 ablprop XAbelYAbel
22 10 21 sylibr NCBXAbel