Metamath Proof Explorer


Theorem cznrnglem

Description: Lemma for cznrng : The base set of the ring constructed from a Z/nZ structure by replacing the (multiplicative) ring operation by a constant operation is the base set of the Z/nZ structure. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses cznrng.y Y = /N
cznrng.b B = Base Y
cznrng.x X = Y sSet ndx x B , y B C
Assertion cznrnglem B = Base X

Proof

Step Hyp Ref Expression
1 cznrng.y Y = /N
2 cznrng.b B = Base Y
3 cznrng.x X = Y sSet ndx x B , y B C
4 baseid Base = Slot Base ndx
5 basendxnmulrndx Base ndx ndx
6 4 5 setsnid Base Y = Base Y sSet ndx x B , y B C
7 3 eqcomi Y sSet ndx x B , y B C = X
8 7 fveq2i Base Y sSet ndx x B , y B C = Base X
9 2 6 8 3eqtri B = Base X