Metamath Proof Explorer
Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)
|
|
Ref |
Expression |
|
Hypothesis |
da.ps0 |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
|
Assertion |
dalemccnedd |
⊢ ( 𝜓 → 𝑐 ≠ 𝑑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
da.ps0 |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
2 |
|
simp31 |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) → 𝑑 ≠ 𝑐 ) |
3 |
1 2
|
sylbi |
⊢ ( 𝜓 → 𝑑 ≠ 𝑐 ) |
4 |
3
|
necomd |
⊢ ( 𝜓 → 𝑐 ≠ 𝑑 ) |