Metamath Proof Explorer


Definition df-bases

Description: Define the class of topological bases. Equivalent to definition of basis in Munkres p. 78 (see isbasis2g ). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion df-bases TopBases = { 𝑥 ∣ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦𝑧 ) ⊆ ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctb TopBases
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 vz 𝑧
5 2 cv 𝑦
6 4 cv 𝑧
7 5 6 cin ( 𝑦𝑧 )
8 7 cpw 𝒫 ( 𝑦𝑧 )
9 3 8 cin ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) )
10 9 cuni ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) )
11 7 10 wss ( 𝑦𝑧 ) ⊆ ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) )
12 11 4 3 wral 𝑧𝑥 ( 𝑦𝑧 ) ⊆ ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) )
13 12 2 3 wral 𝑦𝑥𝑧𝑥 ( 𝑦𝑧 ) ⊆ ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) )
14 13 1 cab { 𝑥 ∣ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦𝑧 ) ⊆ ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) }
15 0 14 wceq TopBases = { 𝑥 ∣ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦𝑧 ) ⊆ ( 𝑥 ∩ 𝒫 ( 𝑦𝑧 ) ) }