Step |
Hyp |
Ref |
Expression |
1 |
|
ineq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
2 |
1
|
unieqd |
⊢ ( 𝑧 = 𝐵 → ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
3 |
2
|
sseq2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
4 |
3
|
raleqbi1dv |
⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
5 |
4
|
raleqbi1dv |
⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
6 |
|
df-bases |
⊢ TopBases = { 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) } |
7 |
5 6
|
elab2g |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |