Metamath Proof Explorer


Theorem isbasisg

Description: Express the predicate "the set B is a basis for a topology". (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion isbasisg ( 𝐵𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥𝑦 ) ⊆ ( 𝐵 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 ineq1 ( 𝑧 = 𝐵 → ( 𝑧 ∩ 𝒫 ( 𝑥𝑦 ) ) = ( 𝐵 ∩ 𝒫 ( 𝑥𝑦 ) ) )
2 1 unieqd ( 𝑧 = 𝐵 ( 𝑧 ∩ 𝒫 ( 𝑥𝑦 ) ) = ( 𝐵 ∩ 𝒫 ( 𝑥𝑦 ) ) )
3 2 sseq2d ( 𝑧 = 𝐵 → ( ( 𝑥𝑦 ) ⊆ ( 𝑧 ∩ 𝒫 ( 𝑥𝑦 ) ) ↔ ( 𝑥𝑦 ) ⊆ ( 𝐵 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
4 3 raleqbi1dv ( 𝑧 = 𝐵 → ( ∀ 𝑦𝑧 ( 𝑥𝑦 ) ⊆ ( 𝑧 ∩ 𝒫 ( 𝑥𝑦 ) ) ↔ ∀ 𝑦𝐵 ( 𝑥𝑦 ) ⊆ ( 𝐵 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
5 4 raleqbi1dv ( 𝑧 = 𝐵 → ( ∀ 𝑥𝑧𝑦𝑧 ( 𝑥𝑦 ) ⊆ ( 𝑧 ∩ 𝒫 ( 𝑥𝑦 ) ) ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥𝑦 ) ⊆ ( 𝐵 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
6 df-bases TopBases = { 𝑧 ∣ ∀ 𝑥𝑧𝑦𝑧 ( 𝑥𝑦 ) ⊆ ( 𝑧 ∩ 𝒫 ( 𝑥𝑦 ) ) }
7 5 6 elab2g ( 𝐵𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥𝑦 ) ⊆ ( 𝐵 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )