Metamath Proof Explorer


Definition df-bj-arg

Description: Define the argument of a nonzero extended complex number. By convention, it has values in ( -upi , pi ] . Another convention chooses values in [ 0 , 2 _pi ) but the present convention simplifies formulas giving the argument as an arctangent. (Contributed by BJ, 22-Jun-2019) The "else" case of the second conditional operator, corresponding to infinite extended complex numbers other than minfty , gives a definition depending on the specific definition chosen for these numbers ( df-bj-inftyexpitau ), and therefore should not be relied upon. (New usage is discouraged.)

Ref Expression
Assertion df-bj-arg Arg = ( 𝑥 ∈ ( ℂ̅ ∖ { 0 } ) ↦ if ( 𝑥 ∈ ℂ , ( ℑ ‘ ( log ‘ 𝑥 ) ) , if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st𝑥 ) / ( 2 · π ) ) − π ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 carg Arg
1 vx 𝑥
2 cccbar ℂ̅
3 cc0 0
4 3 csn { 0 }
5 2 4 cdif ( ℂ̅ ∖ { 0 } )
6 1 cv 𝑥
7 cc
8 6 7 wcel 𝑥 ∈ ℂ
9 cim
10 clog log
11 6 10 cfv ( log ‘ 𝑥 )
12 11 9 cfv ( ℑ ‘ ( log ‘ 𝑥 ) )
13 cltxr <ℝ̅
14 6 3 13 wbr 𝑥 <ℝ̅ 0
15 cpi π
16 c1st 1st
17 6 16 cfv ( 1st𝑥 )
18 cdiv /
19 c2 2
20 cmul ·
21 19 15 20 co ( 2 · π )
22 17 21 18 co ( ( 1st𝑥 ) / ( 2 · π ) )
23 cmin
24 22 15 23 co ( ( ( 1st𝑥 ) / ( 2 · π ) ) − π )
25 14 15 24 cif if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st𝑥 ) / ( 2 · π ) ) − π ) )
26 8 12 25 cif if ( 𝑥 ∈ ℂ , ( ℑ ‘ ( log ‘ 𝑥 ) ) , if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st𝑥 ) / ( 2 · π ) ) − π ) ) )
27 1 5 26 cmpt ( 𝑥 ∈ ( ℂ̅ ∖ { 0 } ) ↦ if ( 𝑥 ∈ ℂ , ( ℑ ‘ ( log ‘ 𝑥 ) ) , if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st𝑥 ) / ( 2 · π ) ) − π ) ) ) )
28 0 27 wceq Arg = ( 𝑥 ∈ ( ℂ̅ ∖ { 0 } ) ↦ if ( 𝑥 ∈ ℂ , ( ℑ ‘ ( log ‘ 𝑥 ) ) , if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st𝑥 ) / ( 2 · π ) ) − π ) ) ) )