Step |
Hyp |
Ref |
Expression |
0 |
|
carg |
⊢ Arg |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cccbar |
⊢ ℂ̅ |
3 |
|
cc0 |
⊢ 0 |
4 |
3
|
csn |
⊢ { 0 } |
5 |
2 4
|
cdif |
⊢ ( ℂ̅ ∖ { 0 } ) |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
|
cc |
⊢ ℂ |
8 |
6 7
|
wcel |
⊢ 𝑥 ∈ ℂ |
9 |
|
cim |
⊢ ℑ |
10 |
|
clog |
⊢ log |
11 |
6 10
|
cfv |
⊢ ( log ‘ 𝑥 ) |
12 |
11 9
|
cfv |
⊢ ( ℑ ‘ ( log ‘ 𝑥 ) ) |
13 |
|
cltxr |
⊢ <ℝ̅ |
14 |
6 3 13
|
wbr |
⊢ 𝑥 <ℝ̅ 0 |
15 |
|
cpi |
⊢ π |
16 |
|
c1st |
⊢ 1st |
17 |
6 16
|
cfv |
⊢ ( 1st ‘ 𝑥 ) |
18 |
|
cdiv |
⊢ / |
19 |
|
c2 |
⊢ 2 |
20 |
|
cmul |
⊢ · |
21 |
19 15 20
|
co |
⊢ ( 2 · π ) |
22 |
17 21 18
|
co |
⊢ ( ( 1st ‘ 𝑥 ) / ( 2 · π ) ) |
23 |
|
cmin |
⊢ − |
24 |
22 15 23
|
co |
⊢ ( ( ( 1st ‘ 𝑥 ) / ( 2 · π ) ) − π ) |
25 |
14 15 24
|
cif |
⊢ if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st ‘ 𝑥 ) / ( 2 · π ) ) − π ) ) |
26 |
8 12 25
|
cif |
⊢ if ( 𝑥 ∈ ℂ , ( ℑ ‘ ( log ‘ 𝑥 ) ) , if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st ‘ 𝑥 ) / ( 2 · π ) ) − π ) ) ) |
27 |
1 5 26
|
cmpt |
⊢ ( 𝑥 ∈ ( ℂ̅ ∖ { 0 } ) ↦ if ( 𝑥 ∈ ℂ , ( ℑ ‘ ( log ‘ 𝑥 ) ) , if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st ‘ 𝑥 ) / ( 2 · π ) ) − π ) ) ) ) |
28 |
0 27
|
wceq |
⊢ Arg = ( 𝑥 ∈ ( ℂ̅ ∖ { 0 } ) ↦ if ( 𝑥 ∈ ℂ , ( ℑ ‘ ( log ‘ 𝑥 ) ) , if ( 𝑥 <ℝ̅ 0 , π , ( ( ( 1st ‘ 𝑥 ) / ( 2 · π ) ) − π ) ) ) ) |