| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccf |
⊢ cf |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
con0 |
⊢ On |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
|
vz |
⊢ 𝑧 |
| 5 |
3
|
cv |
⊢ 𝑦 |
| 6 |
|
ccrd |
⊢ card |
| 7 |
4
|
cv |
⊢ 𝑧 |
| 8 |
7 6
|
cfv |
⊢ ( card ‘ 𝑧 ) |
| 9 |
5 8
|
wceq |
⊢ 𝑦 = ( card ‘ 𝑧 ) |
| 10 |
1
|
cv |
⊢ 𝑥 |
| 11 |
7 10
|
wss |
⊢ 𝑧 ⊆ 𝑥 |
| 12 |
|
vv |
⊢ 𝑣 |
| 13 |
|
vu |
⊢ 𝑢 |
| 14 |
12
|
cv |
⊢ 𝑣 |
| 15 |
13
|
cv |
⊢ 𝑢 |
| 16 |
14 15
|
wss |
⊢ 𝑣 ⊆ 𝑢 |
| 17 |
16 13 7
|
wrex |
⊢ ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 |
| 18 |
17 12 10
|
wral |
⊢ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 |
| 19 |
11 18
|
wa |
⊢ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) |
| 20 |
9 19
|
wa |
⊢ ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) |
| 21 |
20 4
|
wex |
⊢ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) |
| 22 |
21 3
|
cab |
⊢ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } |
| 23 |
22
|
cint |
⊢ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } |
| 24 |
1 2 23
|
cmpt |
⊢ ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } ) |
| 25 |
0 24
|
wceq |
⊢ cf = ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } ) |