Metamath Proof Explorer


Definition df-cls

Description: Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval . (Contributed by NM, 3-Oct-2006)

Ref Expression
Assertion df-cls cls = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥𝑦 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccl cls
1 vj 𝑗
2 ctop Top
3 vx 𝑥
4 1 cv 𝑗
5 4 cuni 𝑗
6 5 cpw 𝒫 𝑗
7 vy 𝑦
8 ccld Clsd
9 4 8 cfv ( Clsd ‘ 𝑗 )
10 3 cv 𝑥
11 7 cv 𝑦
12 10 11 wss 𝑥𝑦
13 12 7 9 crab { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥𝑦 }
14 13 cint { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥𝑦 }
15 3 6 14 cmpt ( 𝑥 ∈ 𝒫 𝑗 { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥𝑦 } )
16 1 2 15 cmpt ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥𝑦 } ) )
17 0 16 wceq cls = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 𝑗 { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥𝑦 } ) )