Description: Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval . (Contributed by NM, 3-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cls | |- cls = ( j e. Top |-> ( x e. ~P U. j |-> |^| { y e. ( Clsd ` j ) | x C_ y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccl | |- cls |
|
| 1 | vj | |- j |
|
| 2 | ctop | |- Top |
|
| 3 | vx | |- x |
|
| 4 | 1 | cv | |- j |
| 5 | 4 | cuni | |- U. j |
| 6 | 5 | cpw | |- ~P U. j |
| 7 | vy | |- y |
|
| 8 | ccld | |- Clsd |
|
| 9 | 4 8 | cfv | |- ( Clsd ` j ) |
| 10 | 3 | cv | |- x |
| 11 | 7 | cv | |- y |
| 12 | 10 11 | wss | |- x C_ y |
| 13 | 12 7 9 | crab | |- { y e. ( Clsd ` j ) | x C_ y } |
| 14 | 13 | cint | |- |^| { y e. ( Clsd ` j ) | x C_ y } |
| 15 | 3 6 14 | cmpt | |- ( x e. ~P U. j |-> |^| { y e. ( Clsd ` j ) | x C_ y } ) |
| 16 | 1 2 15 | cmpt | |- ( j e. Top |-> ( x e. ~P U. j |-> |^| { y e. ( Clsd ` j ) | x C_ y } ) ) |
| 17 | 0 16 | wceq | |- cls = ( j e. Top |-> ( x e. ~P U. j |-> |^| { y e. ( Clsd ` j ) | x C_ y } ) ) |