Metamath Proof Explorer


Definition df-cls

Description: Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval . (Contributed by NM, 3-Oct-2006)

Ref Expression
Assertion df-cls
|- cls = ( j e. Top |-> ( x e. ~P U. j |-> |^| { y e. ( Clsd ` j ) | x C_ y } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccl
 |-  cls
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 5 cpw
 |-  ~P U. j
7 vy
 |-  y
8 ccld
 |-  Clsd
9 4 8 cfv
 |-  ( Clsd ` j )
10 3 cv
 |-  x
11 7 cv
 |-  y
12 10 11 wss
 |-  x C_ y
13 12 7 9 crab
 |-  { y e. ( Clsd ` j ) | x C_ y }
14 13 cint
 |-  |^| { y e. ( Clsd ` j ) | x C_ y }
15 3 6 14 cmpt
 |-  ( x e. ~P U. j |-> |^| { y e. ( Clsd ` j ) | x C_ y } )
16 1 2 15 cmpt
 |-  ( j e. Top |-> ( x e. ~P U. j |-> |^| { y e. ( Clsd ` j ) | x C_ y } ) )
17 0 16 wceq
 |-  cls = ( j e. Top |-> ( x e. ~P U. j |-> |^| { y e. ( Clsd ` j ) | x C_ y } ) )