| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cclwwlk |
⊢ ClWWalks |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vw |
⊢ 𝑤 |
| 4 |
|
cvtx |
⊢ Vtx |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
| 7 |
6
|
cword |
⊢ Word ( Vtx ‘ 𝑔 ) |
| 8 |
3
|
cv |
⊢ 𝑤 |
| 9 |
|
c0 |
⊢ ∅ |
| 10 |
8 9
|
wne |
⊢ 𝑤 ≠ ∅ |
| 11 |
|
vi |
⊢ 𝑖 |
| 12 |
|
cc0 |
⊢ 0 |
| 13 |
|
cfzo |
⊢ ..^ |
| 14 |
|
chash |
⊢ ♯ |
| 15 |
8 14
|
cfv |
⊢ ( ♯ ‘ 𝑤 ) |
| 16 |
|
cmin |
⊢ − |
| 17 |
|
c1 |
⊢ 1 |
| 18 |
15 17 16
|
co |
⊢ ( ( ♯ ‘ 𝑤 ) − 1 ) |
| 19 |
12 18 13
|
co |
⊢ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) |
| 20 |
11
|
cv |
⊢ 𝑖 |
| 21 |
20 8
|
cfv |
⊢ ( 𝑤 ‘ 𝑖 ) |
| 22 |
|
caddc |
⊢ + |
| 23 |
20 17 22
|
co |
⊢ ( 𝑖 + 1 ) |
| 24 |
23 8
|
cfv |
⊢ ( 𝑤 ‘ ( 𝑖 + 1 ) ) |
| 25 |
21 24
|
cpr |
⊢ { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } |
| 26 |
|
cedg |
⊢ Edg |
| 27 |
5 26
|
cfv |
⊢ ( Edg ‘ 𝑔 ) |
| 28 |
25 27
|
wcel |
⊢ { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) |
| 29 |
28 11 19
|
wral |
⊢ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) |
| 30 |
|
clsw |
⊢ lastS |
| 31 |
8 30
|
cfv |
⊢ ( lastS ‘ 𝑤 ) |
| 32 |
12 8
|
cfv |
⊢ ( 𝑤 ‘ 0 ) |
| 33 |
31 32
|
cpr |
⊢ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } |
| 34 |
33 27
|
wcel |
⊢ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) |
| 35 |
10 29 34
|
w3a |
⊢ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) ) |
| 36 |
35 3 7
|
crab |
⊢ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) ) } |
| 37 |
1 2 36
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) ) } ) |
| 38 |
0 37
|
wceq |
⊢ ClWWalks = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) ) } ) |