Metamath Proof Explorer


Definition df-clwwlk

Description: Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks . Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Assertion df-clwwlk ClWWalks=gVwWordVtxg|wi0..^w1wiwi+1EdgglastSww0Edgg

Detailed syntax breakdown

Step Hyp Ref Expression
0 cclwwlk classClWWalks
1 vg setvarg
2 cvv classV
3 vw setvarw
4 cvtx classVtx
5 1 cv setvarg
6 5 4 cfv classVtxg
7 6 cword classWordVtxg
8 3 cv setvarw
9 c0 class
10 8 9 wne wffw
11 vi setvari
12 cc0 class0
13 cfzo class..^
14 chash class.
15 8 14 cfv classw
16 cmin class
17 c1 class1
18 15 17 16 co classw1
19 12 18 13 co class0..^w1
20 11 cv setvari
21 20 8 cfv classwi
22 caddc class+
23 20 17 22 co classi+1
24 23 8 cfv classwi+1
25 21 24 cpr classwiwi+1
26 cedg classEdg
27 5 26 cfv classEdgg
28 25 27 wcel wffwiwi+1Edgg
29 28 11 19 wral wffi0..^w1wiwi+1Edgg
30 clsw classlastS
31 8 30 cfv classlastSw
32 12 8 cfv classw0
33 31 32 cpr classlastSww0
34 33 27 wcel wfflastSww0Edgg
35 10 29 34 w3a wffwi0..^w1wiwi+1EdgglastSww0Edgg
36 35 3 7 crab classwWordVtxg|wi0..^w1wiwi+1EdgglastSww0Edgg
37 1 2 36 cmpt classgVwWordVtxg|wi0..^w1wiwi+1EdgglastSww0Edgg
38 0 37 wceq wffClWWalks=gVwWordVtxg|wi0..^w1wiwi+1EdgglastSww0Edgg