Metamath Proof Explorer


Theorem clwwlk

Description: The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Hypotheses clwwlk.v V=VtxG
clwwlk.e E=EdgG
Assertion clwwlk ClWWalksG=wWordV|wi0..^w1wiwi+1ElastSww0E

Proof

Step Hyp Ref Expression
1 clwwlk.v V=VtxG
2 clwwlk.e E=EdgG
3 df-clwwlk ClWWalks=gVwWordVtxg|wi0..^w1wiwi+1EdgglastSww0Edgg
4 fveq2 g=GVtxg=VtxG
5 4 1 eqtr4di g=GVtxg=V
6 wrdeq Vtxg=VWordVtxg=WordV
7 5 6 syl g=GWordVtxg=WordV
8 fveq2 g=GEdgg=EdgG
9 8 2 eqtr4di g=GEdgg=E
10 9 eleq2d g=Gwiwi+1Edggwiwi+1E
11 10 ralbidv g=Gi0..^w1wiwi+1Edggi0..^w1wiwi+1E
12 9 eleq2d g=GlastSww0EdgglastSww0E
13 11 12 3anbi23d g=Gwi0..^w1wiwi+1EdgglastSww0Edggwi0..^w1wiwi+1ElastSww0E
14 7 13 rabeqbidv g=GwWordVtxg|wi0..^w1wiwi+1EdgglastSww0Edgg=wWordV|wi0..^w1wiwi+1ElastSww0E
15 id GVGV
16 1 fvexi VV
17 16 a1i GVVV
18 wrdexg VVWordVV
19 rabexg WordVVwWordV|wi0..^w1wiwi+1ElastSww0EV
20 17 18 19 3syl GVwWordV|wi0..^w1wiwi+1ElastSww0EV
21 3 14 15 20 fvmptd3 GVClWWalksG=wWordV|wi0..^w1wiwi+1ElastSww0E
22 fvprc ¬GVClWWalksG=
23 noel ¬lastSww0
24 fvprc ¬GVEdgG=
25 2 24 eqtrid ¬GVE=
26 25 eleq2d ¬GVlastSww0ElastSww0
27 23 26 mtbiri ¬GV¬lastSww0E
28 27 adantr ¬GVwWordV¬lastSww0E
29 28 intn3an3d ¬GVwWordV¬wi0..^w1wiwi+1ElastSww0E
30 29 ralrimiva ¬GVwWordV¬wi0..^w1wiwi+1ElastSww0E
31 rabeq0 wWordV|wi0..^w1wiwi+1ElastSww0E=wWordV¬wi0..^w1wiwi+1ElastSww0E
32 30 31 sylibr ¬GVwWordV|wi0..^w1wiwi+1ElastSww0E=
33 22 32 eqtr4d ¬GVClWWalksG=wWordV|wi0..^w1wiwi+1ElastSww0E
34 21 33 pm2.61i ClWWalksG=wWordV|wi0..^w1wiwi+1ElastSww0E