Description: Acommutative magma is a magma with a commutative operation. Definition 8 of BourbakiAlg1 p. 7. (Contributed by AV, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cmgm2 | ⊢ CMgmALT = { 𝑚 ∈ MgmALT ∣ ( +g ‘ 𝑚 ) comLaw ( Base ‘ 𝑚 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccmgm2 | ⊢ CMgmALT | |
| 1 | vm | ⊢ 𝑚 | |
| 2 | cmgm2 | ⊢ MgmALT | |
| 3 | cplusg | ⊢ +g | |
| 4 | 1 | cv | ⊢ 𝑚 |
| 5 | 4 3 | cfv | ⊢ ( +g ‘ 𝑚 ) |
| 6 | ccomlaw | ⊢ comLaw | |
| 7 | cbs | ⊢ Base | |
| 8 | 4 7 | cfv | ⊢ ( Base ‘ 𝑚 ) |
| 9 | 5 8 6 | wbr | ⊢ ( +g ‘ 𝑚 ) comLaw ( Base ‘ 𝑚 ) |
| 10 | 9 1 2 | crab | ⊢ { 𝑚 ∈ MgmALT ∣ ( +g ‘ 𝑚 ) comLaw ( Base ‘ 𝑚 ) } |
| 11 | 0 10 | wceq | ⊢ CMgmALT = { 𝑚 ∈ MgmALT ∣ ( +g ‘ 𝑚 ) comLaw ( Base ‘ 𝑚 ) } |