Description: Acommutative magma is a magma with a commutative operation. Definition 8 of BourbakiAlg1 p. 7. (Contributed by AV, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cmgm2 | |- CMgmALT = { m e. MgmALT | ( +g ` m ) comLaw ( Base ` m ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccmgm2 | |- CMgmALT |
|
| 1 | vm | |- m |
|
| 2 | cmgm2 | |- MgmALT |
|
| 3 | cplusg | |- +g |
|
| 4 | 1 | cv | |- m |
| 5 | 4 3 | cfv | |- ( +g ` m ) |
| 6 | ccomlaw | |- comLaw |
|
| 7 | cbs | |- Base |
|
| 8 | 4 7 | cfv | |- ( Base ` m ) |
| 9 | 5 8 6 | wbr | |- ( +g ` m ) comLaw ( Base ` m ) |
| 10 | 9 1 2 | crab | |- { m e. MgmALT | ( +g ` m ) comLaw ( Base ` m ) } |
| 11 | 0 10 | wceq | |- CMgmALT = { m e. MgmALT | ( +g ` m ) comLaw ( Base ` m ) } |