Metamath Proof Explorer


Definition df-cmgm2

Description: Acommutative magma is a magma with a commutative operation. Definition 8 of BourbakiAlg1 p. 7. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion df-cmgm2
|- CMgmALT = { m e. MgmALT | ( +g ` m ) comLaw ( Base ` m ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmgm2
 |-  CMgmALT
1 vm
 |-  m
2 cmgm2
 |-  MgmALT
3 cplusg
 |-  +g
4 1 cv
 |-  m
5 4 3 cfv
 |-  ( +g ` m )
6 ccomlaw
 |-  comLaw
7 cbs
 |-  Base
8 4 7 cfv
 |-  ( Base ` m )
9 5 8 6 wbr
 |-  ( +g ` m ) comLaw ( Base ` m )
10 9 1 2 crab
 |-  { m e. MgmALT | ( +g ` m ) comLaw ( Base ` m ) }
11 0 10 wceq
 |-  CMgmALT = { m e. MgmALT | ( +g ` m ) comLaw ( Base ` m ) }