Metamath Proof Explorer


Definition df-cusp

Description: Define the class of all complete uniform spaces. Definition 3 of BourbakiTop1 p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Assertion df-cusp CUnifSp = { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccusp CUnifSp
1 vw 𝑤
2 cusp UnifSp
3 vc 𝑐
4 cfil Fil
5 cbs Base
6 1 cv 𝑤
7 6 5 cfv ( Base ‘ 𝑤 )
8 7 4 cfv ( Fil ‘ ( Base ‘ 𝑤 ) )
9 3 cv 𝑐
10 ccfilu CauFilu
11 cuss UnifSt
12 6 11 cfv ( UnifSt ‘ 𝑤 )
13 12 10 cfv ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) )
14 9 13 wcel 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) )
15 ctopn TopOpen
16 6 15 cfv ( TopOpen ‘ 𝑤 )
17 cflim fLim
18 16 9 17 co ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 )
19 c0
20 18 19 wne ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅
21 14 20 wi ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ )
22 21 3 8 wral 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ )
23 22 1 2 crab { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) }
24 0 23 wceq CUnifSp = { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) }