| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccusp |
⊢ CUnifSp |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cusp |
⊢ UnifSp |
| 3 |
|
vc |
⊢ 𝑐 |
| 4 |
|
cfil |
⊢ Fil |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑤 |
| 7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 8 |
7 4
|
cfv |
⊢ ( Fil ‘ ( Base ‘ 𝑤 ) ) |
| 9 |
3
|
cv |
⊢ 𝑐 |
| 10 |
|
ccfilu |
⊢ CauFilu |
| 11 |
|
cuss |
⊢ UnifSt |
| 12 |
6 11
|
cfv |
⊢ ( UnifSt ‘ 𝑤 ) |
| 13 |
12 10
|
cfv |
⊢ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) |
| 14 |
9 13
|
wcel |
⊢ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) |
| 15 |
|
ctopn |
⊢ TopOpen |
| 16 |
6 15
|
cfv |
⊢ ( TopOpen ‘ 𝑤 ) |
| 17 |
|
cflim |
⊢ fLim |
| 18 |
16 9 17
|
co |
⊢ ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) |
| 19 |
|
c0 |
⊢ ∅ |
| 20 |
18 19
|
wne |
⊢ ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ |
| 21 |
14 20
|
wi |
⊢ ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) |
| 22 |
21 3 8
|
wral |
⊢ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) |
| 23 |
22 1 2
|
crab |
⊢ { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) } |
| 24 |
0 23
|
wceq |
⊢ CUnifSp = { 𝑤 ∈ UnifSp ∣ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑤 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑤 ) ) → ( ( TopOpen ‘ 𝑤 ) fLim 𝑐 ) ≠ ∅ ) } |