Metamath Proof Explorer


Definition df-cusp

Description: Define the class of all complete uniform spaces. Definition 3 of BourbakiTop1 p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Assertion df-cusp
|- CUnifSp = { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccusp
 |-  CUnifSp
1 vw
 |-  w
2 cusp
 |-  UnifSp
3 vc
 |-  c
4 cfil
 |-  Fil
5 cbs
 |-  Base
6 1 cv
 |-  w
7 6 5 cfv
 |-  ( Base ` w )
8 7 4 cfv
 |-  ( Fil ` ( Base ` w ) )
9 3 cv
 |-  c
10 ccfilu
 |-  CauFilU
11 cuss
 |-  UnifSt
12 6 11 cfv
 |-  ( UnifSt ` w )
13 12 10 cfv
 |-  ( CauFilU ` ( UnifSt ` w ) )
14 9 13 wcel
 |-  c e. ( CauFilU ` ( UnifSt ` w ) )
15 ctopn
 |-  TopOpen
16 6 15 cfv
 |-  ( TopOpen ` w )
17 cflim
 |-  fLim
18 16 9 17 co
 |-  ( ( TopOpen ` w ) fLim c )
19 c0
 |-  (/)
20 18 19 wne
 |-  ( ( TopOpen ` w ) fLim c ) =/= (/)
21 14 20 wi
 |-  ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) )
22 21 3 8 wral
 |-  A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) )
23 22 1 2 crab
 |-  { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) }
24 0 23 wceq
 |-  CUnifSp = { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) }