| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccusp |
|- CUnifSp |
| 1 |
|
vw |
|- w |
| 2 |
|
cusp |
|- UnifSp |
| 3 |
|
vc |
|- c |
| 4 |
|
cfil |
|- Fil |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- w |
| 7 |
6 5
|
cfv |
|- ( Base ` w ) |
| 8 |
7 4
|
cfv |
|- ( Fil ` ( Base ` w ) ) |
| 9 |
3
|
cv |
|- c |
| 10 |
|
ccfilu |
|- CauFilU |
| 11 |
|
cuss |
|- UnifSt |
| 12 |
6 11
|
cfv |
|- ( UnifSt ` w ) |
| 13 |
12 10
|
cfv |
|- ( CauFilU ` ( UnifSt ` w ) ) |
| 14 |
9 13
|
wcel |
|- c e. ( CauFilU ` ( UnifSt ` w ) ) |
| 15 |
|
ctopn |
|- TopOpen |
| 16 |
6 15
|
cfv |
|- ( TopOpen ` w ) |
| 17 |
|
cflim |
|- fLim |
| 18 |
16 9 17
|
co |
|- ( ( TopOpen ` w ) fLim c ) |
| 19 |
|
c0 |
|- (/) |
| 20 |
18 19
|
wne |
|- ( ( TopOpen ` w ) fLim c ) =/= (/) |
| 21 |
14 20
|
wi |
|- ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) |
| 22 |
21 3 8
|
wral |
|- A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) |
| 23 |
22 1 2
|
crab |
|- { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) } |
| 24 |
0 23
|
wceq |
|- CUnifSp = { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) } |