Metamath Proof Explorer


Definition df-cusp

Description: Define the class of all complete uniform spaces. Definition 3 of BourbakiTop1 p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Assertion df-cusp CUnifSp=wUnifSp|cFilBasewcCauFilUUnifStwTopOpenwfLimc

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccusp classCUnifSp
1 vw setvarw
2 cusp classUnifSp
3 vc setvarc
4 cfil classFil
5 cbs classBase
6 1 cv setvarw
7 6 5 cfv classBasew
8 7 4 cfv classFilBasew
9 3 cv setvarc
10 ccfilu classCauFilU
11 cuss classUnifSt
12 6 11 cfv classUnifStw
13 12 10 cfv classCauFilUUnifStw
14 9 13 wcel wffcCauFilUUnifStw
15 ctopn classTopOpen
16 6 15 cfv classTopOpenw
17 cflim classfLim
18 16 9 17 co classTopOpenwfLimc
19 c0 class
20 18 19 wne wffTopOpenwfLimc
21 14 20 wi wffcCauFilUUnifStwTopOpenwfLimc
22 21 3 8 wral wffcFilBasewcCauFilUUnifStwTopOpenwfLimc
23 22 1 2 crab classwUnifSp|cFilBasewcCauFilUUnifStwTopOpenwfLimc
24 0 23 wceq wffCUnifSp=wUnifSp|cFilBasewcCauFilUUnifStwTopOpenwfLimc