Metamath Proof Explorer


Theorem iscusp

Description: The predicate " W is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017)

Ref Expression
Assertion iscusp WCUnifSpWUnifSpcFilBaseWcCauFilUUnifStWTopOpenWfLimc

Proof

Step Hyp Ref Expression
1 2fveq3 w=WFilBasew=FilBaseW
2 2fveq3 w=WCauFilUUnifStw=CauFilUUnifStW
3 2 eleq2d w=WcCauFilUUnifStwcCauFilUUnifStW
4 fveq2 w=WTopOpenw=TopOpenW
5 4 oveq1d w=WTopOpenwfLimc=TopOpenWfLimc
6 5 neeq1d w=WTopOpenwfLimcTopOpenWfLimc
7 3 6 imbi12d w=WcCauFilUUnifStwTopOpenwfLimccCauFilUUnifStWTopOpenWfLimc
8 1 7 raleqbidv w=WcFilBasewcCauFilUUnifStwTopOpenwfLimccFilBaseWcCauFilUUnifStWTopOpenWfLimc
9 df-cusp CUnifSp=wUnifSp|cFilBasewcCauFilUUnifStwTopOpenwfLimc
10 8 9 elrab2 WCUnifSpWUnifSpcFilBaseWcCauFilUUnifStWTopOpenWfLimc