| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdjaN | ⊢ vA | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vw | ⊢ 𝑤 | 
						
							| 4 |  | clh | ⊢ LHyp | 
						
							| 5 | 1 | cv | ⊢ 𝑘 | 
						
							| 6 | 5 4 | cfv | ⊢ ( LHyp ‘ 𝑘 ) | 
						
							| 7 |  | vx | ⊢ 𝑥 | 
						
							| 8 |  | cltrn | ⊢ LTrn | 
						
							| 9 | 5 8 | cfv | ⊢ ( LTrn ‘ 𝑘 ) | 
						
							| 10 | 3 | cv | ⊢ 𝑤 | 
						
							| 11 | 10 9 | cfv | ⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 12 | 11 | cpw | ⊢ 𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 13 |  | vy | ⊢ 𝑦 | 
						
							| 14 |  | cocaN | ⊢ ocA | 
						
							| 15 | 5 14 | cfv | ⊢ ( ocA ‘ 𝑘 ) | 
						
							| 16 | 10 15 | cfv | ⊢ ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 17 | 7 | cv | ⊢ 𝑥 | 
						
							| 18 | 17 16 | cfv | ⊢ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) | 
						
							| 19 | 13 | cv | ⊢ 𝑦 | 
						
							| 20 | 19 16 | cfv | ⊢ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) | 
						
							| 21 | 18 20 | cin | ⊢ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) | 
						
							| 22 | 21 16 | cfv | ⊢ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) | 
						
							| 23 | 7 13 12 12 22 | cmpo | ⊢ ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) | 
						
							| 24 | 3 6 23 | cmpt | ⊢ ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 25 | 1 2 24 | cmpt | ⊢ ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 26 | 0 25 | wceq | ⊢ vA  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) |