| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdjaN |
|- vA |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vw |
|- w |
| 4 |
|
clh |
|- LHyp |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
| 7 |
|
vx |
|- x |
| 8 |
|
cltrn |
|- LTrn |
| 9 |
5 8
|
cfv |
|- ( LTrn ` k ) |
| 10 |
3
|
cv |
|- w |
| 11 |
10 9
|
cfv |
|- ( ( LTrn ` k ) ` w ) |
| 12 |
11
|
cpw |
|- ~P ( ( LTrn ` k ) ` w ) |
| 13 |
|
vy |
|- y |
| 14 |
|
cocaN |
|- ocA |
| 15 |
5 14
|
cfv |
|- ( ocA ` k ) |
| 16 |
10 15
|
cfv |
|- ( ( ocA ` k ) ` w ) |
| 17 |
7
|
cv |
|- x |
| 18 |
17 16
|
cfv |
|- ( ( ( ocA ` k ) ` w ) ` x ) |
| 19 |
13
|
cv |
|- y |
| 20 |
19 16
|
cfv |
|- ( ( ( ocA ` k ) ` w ) ` y ) |
| 21 |
18 20
|
cin |
|- ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) |
| 22 |
21 16
|
cfv |
|- ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) |
| 23 |
7 13 12 12 22
|
cmpo |
|- ( x e. ~P ( ( LTrn ` k ) ` w ) , y e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) ) |
| 24 |
3 6 23
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) , y e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) ) ) |
| 25 |
1 2 24
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) , y e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) ) ) ) |
| 26 |
0 25
|
wceq |
|- vA = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) , y e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) ) ) ) |