| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djaval.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | elex |  |-  ( K e. V -> K e. _V ) | 
						
							| 3 |  | fveq2 |  |-  ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) | 
						
							| 4 | 3 1 | eqtr4di |  |-  ( k = K -> ( LHyp ` k ) = H ) | 
						
							| 5 |  | fveq2 |  |-  ( k = K -> ( LTrn ` k ) = ( LTrn ` K ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( k = K -> ( ( LTrn ` k ) ` w ) = ( ( LTrn ` K ) ` w ) ) | 
						
							| 7 | 6 | pweqd |  |-  ( k = K -> ~P ( ( LTrn ` k ) ` w ) = ~P ( ( LTrn ` K ) ` w ) ) | 
						
							| 8 |  | fveq2 |  |-  ( k = K -> ( ocA ` k ) = ( ocA ` K ) ) | 
						
							| 9 | 8 | fveq1d |  |-  ( k = K -> ( ( ocA ` k ) ` w ) = ( ( ocA ` K ) ` w ) ) | 
						
							| 10 | 9 | fveq1d |  |-  ( k = K -> ( ( ( ocA ` k ) ` w ) ` x ) = ( ( ( ocA ` K ) ` w ) ` x ) ) | 
						
							| 11 | 9 | fveq1d |  |-  ( k = K -> ( ( ( ocA ` k ) ` w ) ` y ) = ( ( ( ocA ` K ) ` w ) ` y ) ) | 
						
							| 12 | 10 11 | ineq12d |  |-  ( k = K -> ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) = ( ( ( ( ocA ` K ) ` w ) ` x ) i^i ( ( ( ocA ` K ) ` w ) ` y ) ) ) | 
						
							| 13 | 9 12 | fveq12d |  |-  ( k = K -> ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) = ( ( ( ocA ` K ) ` w ) ` ( ( ( ( ocA ` K ) ` w ) ` x ) i^i ( ( ( ocA ` K ) ` w ) ` y ) ) ) ) | 
						
							| 14 | 7 7 13 | mpoeq123dv |  |-  ( k = K -> ( x e. ~P ( ( LTrn ` k ) ` w ) , y e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) ) = ( x e. ~P ( ( LTrn ` K ) ` w ) , y e. ~P ( ( LTrn ` K ) ` w ) |-> ( ( ( ocA ` K ) ` w ) ` ( ( ( ( ocA ` K ) ` w ) ` x ) i^i ( ( ( ocA ` K ) ` w ) ` y ) ) ) ) ) | 
						
							| 15 | 4 14 | mpteq12dv |  |-  ( k = K -> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) , y e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) ) ) = ( w e. H |-> ( x e. ~P ( ( LTrn ` K ) ` w ) , y e. ~P ( ( LTrn ` K ) ` w ) |-> ( ( ( ocA ` K ) ` w ) ` ( ( ( ( ocA ` K ) ` w ) ` x ) i^i ( ( ( ocA ` K ) ` w ) ` y ) ) ) ) ) ) | 
						
							| 16 |  | df-djaN |  |-  vA = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) , y e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( ocA ` k ) ` w ) ` ( ( ( ( ocA ` k ) ` w ) ` x ) i^i ( ( ( ocA ` k ) ` w ) ` y ) ) ) ) ) ) | 
						
							| 17 | 15 16 1 | mptfvmpt |  |-  ( K e. _V -> ( vA ` K ) = ( w e. H |-> ( x e. ~P ( ( LTrn ` K ) ` w ) , y e. ~P ( ( LTrn ` K ) ` w ) |-> ( ( ( ocA ` K ) ` w ) ` ( ( ( ( ocA ` K ) ` w ) ` x ) i^i ( ( ( ocA ` K ) ` w ) ` y ) ) ) ) ) ) | 
						
							| 18 | 2 17 | syl |  |-  ( K e. V -> ( vA ` K ) = ( w e. H |-> ( x e. ~P ( ( LTrn ` K ) ` w ) , y e. ~P ( ( LTrn ` K ) ` w ) |-> ( ( ( ocA ` K ) ` w ) ` ( ( ( ( ocA ` K ) ` w ) ` x ) i^i ( ( ( ocA ` K ) ` w ) ` y ) ) ) ) ) ) |