| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djaval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
| 3 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
| 4 |
3 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) ) |
| 6 |
5
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
| 7 |
6
|
pweqd |
⊢ ( 𝑘 = 𝐾 → 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ocA ‘ 𝑘 ) = ( ocA ‘ 𝐾 ) ) |
| 9 |
8
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) = ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ) |
| 10 |
9
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ) |
| 11 |
9
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) |
| 12 |
10 11
|
ineq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) = ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) |
| 13 |
9 12
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) |
| 14 |
7 7 13
|
mpoeq123dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) |
| 15 |
4 14
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) |
| 16 |
|
df-djaN |
⊢ vA = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) |
| 17 |
15 16 1
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( vA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) |
| 18 |
2 17
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( vA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) |