| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djaval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | elex | ⊢ ( 𝐾  ∈  𝑉  →  𝐾  ∈  V ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  ( LHyp ‘ 𝐾 ) ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  𝐻 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LTrn ‘ 𝑘 )  =  ( LTrn ‘ 𝐾 ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 7 | 6 | pweqd | ⊢ ( 𝑘  =  𝐾  →  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  =  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( ocA ‘ 𝑘 )  =  ( ocA ‘ 𝐾 ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( ocA ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ) | 
						
							| 11 | 9 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) | 
						
							| 12 | 10 11 | ineq12d | ⊢ ( 𝑘  =  𝐾  →  ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) )  =  ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) | 
						
							| 13 | 9 12 | fveq12d | ⊢ ( 𝑘  =  𝐾  →  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) )  =  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) | 
						
							| 14 | 7 7 13 | mpoeq123dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) )  =  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 15 | 4 14 | mpteq12dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) )  =  ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 16 |  | df-djaN | ⊢ vA  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 17 | 15 16 1 | mptfvmpt | ⊢ ( 𝐾  ∈  V  →  ( vA ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 18 | 2 17 | syl | ⊢ ( 𝐾  ∈  𝑉  →  ( vA ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) |