| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djaval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | djaval.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | djaval.i | ⊢ 𝐼  =  ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | djaval.n | ⊢  ⊥   =  ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | djaval.j | ⊢ 𝐽  =  ( ( vA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 | 1 | djaffvalN | ⊢ ( 𝐾  ∈  𝑉  →  ( vA ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝐾  ∈  𝑉  →  ( ( vA ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ‘ 𝑊 ) ) | 
						
							| 8 | 5 7 | eqtrid | ⊢ ( 𝐾  ∈  𝑉  →  𝐽  =  ( ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ‘ 𝑊 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 10 | 9 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  =  𝑇 ) | 
						
							| 11 | 10 | pweqd | ⊢ ( 𝑤  =  𝑊  →  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  =  𝒫  𝑇 ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( ocA ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 13 | 12 4 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ( ocA ‘ 𝐾 ) ‘ 𝑤 )  =   ⊥  ) | 
						
							| 14 | 13 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  =  (  ⊥  ‘ 𝑥 ) ) | 
						
							| 15 | 13 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 )  =  (  ⊥  ‘ 𝑦 ) ) | 
						
							| 16 | 14 15 | ineq12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) )  =  ( (  ⊥  ‘ 𝑥 )  ∩  (  ⊥  ‘ 𝑦 ) ) ) | 
						
							| 17 | 13 16 | fveq12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) )  =  (  ⊥  ‘ ( (  ⊥  ‘ 𝑥 )  ∩  (  ⊥  ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 11 11 17 | mpoeq123dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) )  =  ( 𝑥  ∈  𝒫  𝑇 ,  𝑦  ∈  𝒫  𝑇  ↦  (  ⊥  ‘ ( (  ⊥  ‘ 𝑥 )  ∩  (  ⊥  ‘ 𝑦 ) ) ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) )  =  ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 20 | 2 | fvexi | ⊢ 𝑇  ∈  V | 
						
							| 21 | 20 | pwex | ⊢ 𝒫  𝑇  ∈  V | 
						
							| 22 | 21 21 | mpoex | ⊢ ( 𝑥  ∈  𝒫  𝑇 ,  𝑦  ∈  𝒫  𝑇  ↦  (  ⊥  ‘ ( (  ⊥  ‘ 𝑥 )  ∩  (  ⊥  ‘ 𝑦 ) ) ) )  ∈  V | 
						
							| 23 | 18 19 22 | fvmpt | ⊢ ( 𝑊  ∈  𝐻  →  ( ( 𝑤  ∈  𝐻  ↦  ( 𝑥  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑦  ∈  𝒫  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 )  ∩  ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ‘ 𝑊 )  =  ( 𝑥  ∈  𝒫  𝑇 ,  𝑦  ∈  𝒫  𝑇  ↦  (  ⊥  ‘ ( (  ⊥  ‘ 𝑥 )  ∩  (  ⊥  ‘ 𝑦 ) ) ) ) ) | 
						
							| 24 | 8 23 | sylan9eq | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  →  𝐽  =  ( 𝑥  ∈  𝒫  𝑇 ,  𝑦  ∈  𝒫  𝑇  ↦  (  ⊥  ‘ ( (  ⊥  ‘ 𝑥 )  ∩  (  ⊥  ‘ 𝑦 ) ) ) ) ) |