Step |
Hyp |
Ref |
Expression |
1 |
|
djaval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
djaval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
djaval.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
djaval.n |
⊢ ⊥ = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
djaval.j |
⊢ 𝐽 = ( ( vA ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1
|
djaffvalN |
⊢ ( 𝐾 ∈ 𝑉 → ( vA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ) |
7 |
6
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑉 → ( ( vA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ‘ 𝑊 ) ) |
8 |
5 7
|
syl5eq |
⊢ ( 𝐾 ∈ 𝑉 → 𝐽 = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ‘ 𝑊 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝑇 ) |
11 |
10
|
pweqd |
⊢ ( 𝑤 = 𝑊 → 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝒫 𝑇 ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ) |
13 |
12 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) = ⊥ ) |
14 |
13
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) = ( ⊥ ‘ 𝑥 ) ) |
15 |
13
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) = ( ⊥ ‘ 𝑦 ) ) |
16 |
14 15
|
ineq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) = ( ( ⊥ ‘ 𝑥 ) ∩ ( ⊥ ‘ 𝑦 ) ) ) |
17 |
13 16
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∩ ( ⊥ ‘ 𝑦 ) ) ) ) |
18 |
11 11 17
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ 𝒫 𝑇 , 𝑦 ∈ 𝒫 𝑇 ↦ ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ) |
19 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) |
20 |
2
|
fvexi |
⊢ 𝑇 ∈ V |
21 |
20
|
pwex |
⊢ 𝒫 𝑇 ∈ V |
22 |
21 21
|
mpoex |
⊢ ( 𝑥 ∈ 𝒫 𝑇 , 𝑦 ∈ 𝒫 𝑇 ↦ ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ∈ V |
23 |
18 19 22
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑦 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑦 ) ) ) ) ) ‘ 𝑊 ) = ( 𝑥 ∈ 𝒫 𝑇 , 𝑦 ∈ 𝒫 𝑇 ↦ ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ) |
24 |
8 23
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐽 = ( 𝑥 ∈ 𝒫 𝑇 , 𝑦 ∈ 𝒫 𝑇 ↦ ( ⊥ ‘ ( ( ⊥ ‘ 𝑥 ) ∩ ( ⊥ ‘ 𝑦 ) ) ) ) ) |