Metamath Proof Explorer


Theorem djafvalN

Description: Subspace join for DVecA partial vector space. TODO: take out hypothesis .i, no longer used. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses djaval.h H=LHypK
djaval.t T=LTrnKW
djaval.i I=DIsoAKW
djaval.n ˙=ocAKW
djaval.j J=vAKW
Assertion djafvalN KVWHJ=x𝒫T,y𝒫T˙˙x˙y

Proof

Step Hyp Ref Expression
1 djaval.h H=LHypK
2 djaval.t T=LTrnKW
3 djaval.i I=DIsoAKW
4 djaval.n ˙=ocAKW
5 djaval.j J=vAKW
6 1 djaffvalN KVvAK=wHx𝒫LTrnKw,y𝒫LTrnKwocAKwocAKwxocAKwy
7 6 fveq1d KVvAKW=wHx𝒫LTrnKw,y𝒫LTrnKwocAKwocAKwxocAKwyW
8 5 7 eqtrid KVJ=wHx𝒫LTrnKw,y𝒫LTrnKwocAKwocAKwxocAKwyW
9 fveq2 w=WLTrnKw=LTrnKW
10 9 2 eqtr4di w=WLTrnKw=T
11 10 pweqd w=W𝒫LTrnKw=𝒫T
12 fveq2 w=WocAKw=ocAKW
13 12 4 eqtr4di w=WocAKw=˙
14 13 fveq1d w=WocAKwx=˙x
15 13 fveq1d w=WocAKwy=˙y
16 14 15 ineq12d w=WocAKwxocAKwy=˙x˙y
17 13 16 fveq12d w=WocAKwocAKwxocAKwy=˙˙x˙y
18 11 11 17 mpoeq123dv w=Wx𝒫LTrnKw,y𝒫LTrnKwocAKwocAKwxocAKwy=x𝒫T,y𝒫T˙˙x˙y
19 eqid wHx𝒫LTrnKw,y𝒫LTrnKwocAKwocAKwxocAKwy=wHx𝒫LTrnKw,y𝒫LTrnKwocAKwocAKwxocAKwy
20 2 fvexi TV
21 20 pwex 𝒫TV
22 21 21 mpoex x𝒫T,y𝒫T˙˙x˙yV
23 18 19 22 fvmpt WHwHx𝒫LTrnKw,y𝒫LTrnKwocAKwocAKwxocAKwyW=x𝒫T,y𝒫T˙˙x˙y
24 8 23 sylan9eq KVWHJ=x𝒫T,y𝒫T˙˙x˙y