Metamath Proof Explorer


Theorem djavalN

Description: Subspace join for DVecA partial vector space. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses djaval.h H=LHypK
djaval.t T=LTrnKW
djaval.i I=DIsoAKW
djaval.n ˙=ocAKW
djaval.j J=vAKW
Assertion djavalN KHLWHXTYTXJY=˙˙X˙Y

Proof

Step Hyp Ref Expression
1 djaval.h H=LHypK
2 djaval.t T=LTrnKW
3 djaval.i I=DIsoAKW
4 djaval.n ˙=ocAKW
5 djaval.j J=vAKW
6 1 2 3 4 5 djafvalN KHLWHJ=x𝒫T,y𝒫T˙˙x˙y
7 6 adantr KHLWHXTYTJ=x𝒫T,y𝒫T˙˙x˙y
8 7 oveqd KHLWHXTYTXJY=Xx𝒫T,y𝒫T˙˙x˙yY
9 2 fvexi TV
10 9 elpw2 X𝒫TXT
11 10 biimpri XTX𝒫T
12 11 ad2antrl KHLWHXTYTX𝒫T
13 9 elpw2 Y𝒫TYT
14 13 biimpri YTY𝒫T
15 14 ad2antll KHLWHXTYTY𝒫T
16 fvexd KHLWHXTYT˙˙X˙YV
17 fveq2 x=X˙x=˙X
18 17 ineq1d x=X˙x˙y=˙X˙y
19 18 fveq2d x=X˙˙x˙y=˙˙X˙y
20 fveq2 y=Y˙y=˙Y
21 20 ineq2d y=Y˙X˙y=˙X˙Y
22 21 fveq2d y=Y˙˙X˙y=˙˙X˙Y
23 eqid x𝒫T,y𝒫T˙˙x˙y=x𝒫T,y𝒫T˙˙x˙y
24 19 22 23 ovmpog X𝒫TY𝒫T˙˙X˙YVXx𝒫T,y𝒫T˙˙x˙yY=˙˙X˙Y
25 12 15 16 24 syl3anc KHLWHXTYTXx𝒫T,y𝒫T˙˙x˙yY=˙˙X˙Y
26 8 25 eqtrd KHLWHXTYTXJY=˙˙X˙Y