| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdmat | ⊢  DMat | 
						
							| 1 |  | vn | ⊢ 𝑛 | 
						
							| 2 |  | cfn | ⊢ Fin | 
						
							| 3 |  | vr | ⊢ 𝑟 | 
						
							| 4 |  | cvv | ⊢ V | 
						
							| 5 |  | vm | ⊢ 𝑚 | 
						
							| 6 |  | cbs | ⊢ Base | 
						
							| 7 | 1 | cv | ⊢ 𝑛 | 
						
							| 8 |  | cmat | ⊢  Mat | 
						
							| 9 | 3 | cv | ⊢ 𝑟 | 
						
							| 10 | 7 9 8 | co | ⊢ ( 𝑛  Mat  𝑟 ) | 
						
							| 11 | 10 6 | cfv | ⊢ ( Base ‘ ( 𝑛  Mat  𝑟 ) ) | 
						
							| 12 |  | vi | ⊢ 𝑖 | 
						
							| 13 |  | vj | ⊢ 𝑗 | 
						
							| 14 | 12 | cv | ⊢ 𝑖 | 
						
							| 15 | 13 | cv | ⊢ 𝑗 | 
						
							| 16 | 14 15 | wne | ⊢ 𝑖  ≠  𝑗 | 
						
							| 17 | 5 | cv | ⊢ 𝑚 | 
						
							| 18 | 14 15 17 | co | ⊢ ( 𝑖 𝑚 𝑗 ) | 
						
							| 19 |  | c0g | ⊢ 0g | 
						
							| 20 | 9 19 | cfv | ⊢ ( 0g ‘ 𝑟 ) | 
						
							| 21 | 18 20 | wceq | ⊢ ( 𝑖 𝑚 𝑗 )  =  ( 0g ‘ 𝑟 ) | 
						
							| 22 | 16 21 | wi | ⊢ ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =  ( 0g ‘ 𝑟 ) ) | 
						
							| 23 | 22 13 7 | wral | ⊢ ∀ 𝑗  ∈  𝑛 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =  ( 0g ‘ 𝑟 ) ) | 
						
							| 24 | 23 12 7 | wral | ⊢ ∀ 𝑖  ∈  𝑛 ∀ 𝑗  ∈  𝑛 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =  ( 0g ‘ 𝑟 ) ) | 
						
							| 25 | 24 5 11 | crab | ⊢ { 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ∣  ∀ 𝑖  ∈  𝑛 ∀ 𝑗  ∈  𝑛 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =  ( 0g ‘ 𝑟 ) ) } | 
						
							| 26 | 1 3 2 4 25 | cmpo | ⊢ ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  { 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ∣  ∀ 𝑖  ∈  𝑛 ∀ 𝑗  ∈  𝑛 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =  ( 0g ‘ 𝑟 ) ) } ) | 
						
							| 27 | 0 26 | wceq | ⊢  DMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  { 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  𝑟 ) )  ∣  ∀ 𝑖  ∈  𝑛 ∀ 𝑗  ∈  𝑛 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =  ( 0g ‘ 𝑟 ) ) } ) |