| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdmat |  |-  DMat | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cfn |  |-  Fin | 
						
							| 3 |  | vr |  |-  r | 
						
							| 4 |  | cvv |  |-  _V | 
						
							| 5 |  | vm |  |-  m | 
						
							| 6 |  | cbs |  |-  Base | 
						
							| 7 | 1 | cv |  |-  n | 
						
							| 8 |  | cmat |  |-  Mat | 
						
							| 9 | 3 | cv |  |-  r | 
						
							| 10 | 7 9 8 | co |  |-  ( n Mat r ) | 
						
							| 11 | 10 6 | cfv |  |-  ( Base ` ( n Mat r ) ) | 
						
							| 12 |  | vi |  |-  i | 
						
							| 13 |  | vj |  |-  j | 
						
							| 14 | 12 | cv |  |-  i | 
						
							| 15 | 13 | cv |  |-  j | 
						
							| 16 | 14 15 | wne |  |-  i =/= j | 
						
							| 17 | 5 | cv |  |-  m | 
						
							| 18 | 14 15 17 | co |  |-  ( i m j ) | 
						
							| 19 |  | c0g |  |-  0g | 
						
							| 20 | 9 19 | cfv |  |-  ( 0g ` r ) | 
						
							| 21 | 18 20 | wceq |  |-  ( i m j ) = ( 0g ` r ) | 
						
							| 22 | 16 21 | wi |  |-  ( i =/= j -> ( i m j ) = ( 0g ` r ) ) | 
						
							| 23 | 22 13 7 | wral |  |-  A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) | 
						
							| 24 | 23 12 7 | wral |  |-  A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) | 
						
							| 25 | 24 5 11 | crab |  |-  { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } | 
						
							| 26 | 1 3 2 4 25 | cmpo |  |-  ( n e. Fin , r e. _V |-> { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) | 
						
							| 27 | 0 26 | wceq |  |-  DMat = ( n e. Fin , r e. _V |-> { m e. ( Base ` ( n Mat r ) ) | A. i e. n A. j e. n ( i =/= j -> ( i m j ) = ( 0g ` r ) ) } ) |