| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ceqp |
⊢ ~Qp |
| 1 |
|
vp |
⊢ 𝑝 |
| 2 |
|
cprime |
⊢ ℙ |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
vg |
⊢ 𝑔 |
| 5 |
3
|
cv |
⊢ 𝑓 |
| 6 |
4
|
cv |
⊢ 𝑔 |
| 7 |
5 6
|
cpr |
⊢ { 𝑓 , 𝑔 } |
| 8 |
|
cz |
⊢ ℤ |
| 9 |
|
cmap |
⊢ ↑m |
| 10 |
8 8 9
|
co |
⊢ ( ℤ ↑m ℤ ) |
| 11 |
7 10
|
wss |
⊢ { 𝑓 , 𝑔 } ⊆ ( ℤ ↑m ℤ ) |
| 12 |
|
vn |
⊢ 𝑛 |
| 13 |
|
vk |
⊢ 𝑘 |
| 14 |
|
cuz |
⊢ ℤ≥ |
| 15 |
12
|
cv |
⊢ 𝑛 |
| 16 |
15
|
cneg |
⊢ - 𝑛 |
| 17 |
16 14
|
cfv |
⊢ ( ℤ≥ ‘ - 𝑛 ) |
| 18 |
13
|
cv |
⊢ 𝑘 |
| 19 |
18
|
cneg |
⊢ - 𝑘 |
| 20 |
19 5
|
cfv |
⊢ ( 𝑓 ‘ - 𝑘 ) |
| 21 |
|
cmin |
⊢ − |
| 22 |
19 6
|
cfv |
⊢ ( 𝑔 ‘ - 𝑘 ) |
| 23 |
20 22 21
|
co |
⊢ ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) |
| 24 |
|
cdiv |
⊢ / |
| 25 |
1
|
cv |
⊢ 𝑝 |
| 26 |
|
cexp |
⊢ ↑ |
| 27 |
|
caddc |
⊢ + |
| 28 |
|
c1 |
⊢ 1 |
| 29 |
15 28 27
|
co |
⊢ ( 𝑛 + 1 ) |
| 30 |
18 29 27
|
co |
⊢ ( 𝑘 + ( 𝑛 + 1 ) ) |
| 31 |
25 30 26
|
co |
⊢ ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) |
| 32 |
23 31 24
|
co |
⊢ ( ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) / ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) ) |
| 33 |
17 32 13
|
csu |
⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) / ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) ) |
| 34 |
33 8
|
wcel |
⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) / ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) ) ∈ ℤ |
| 35 |
34 12 8
|
wral |
⊢ ∀ 𝑛 ∈ ℤ Σ 𝑘 ∈ ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) / ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) ) ∈ ℤ |
| 36 |
11 35
|
wa |
⊢ ( { 𝑓 , 𝑔 } ⊆ ( ℤ ↑m ℤ ) ∧ ∀ 𝑛 ∈ ℤ Σ 𝑘 ∈ ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) / ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) ) ∈ ℤ ) |
| 37 |
36 3 4
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( ℤ ↑m ℤ ) ∧ ∀ 𝑛 ∈ ℤ Σ 𝑘 ∈ ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) / ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) ) ∈ ℤ ) } |
| 38 |
1 2 37
|
cmpt |
⊢ ( 𝑝 ∈ ℙ ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( ℤ ↑m ℤ ) ∧ ∀ 𝑛 ∈ ℤ Σ 𝑘 ∈ ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) / ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) ) ∈ ℤ ) } ) |
| 39 |
0 38
|
wceq |
⊢ ~Qp = ( 𝑝 ∈ ℙ ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( ℤ ↑m ℤ ) ∧ ∀ 𝑛 ∈ ℤ Σ 𝑘 ∈ ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 ) − ( 𝑔 ‘ - 𝑘 ) ) / ( 𝑝 ↑ ( 𝑘 + ( 𝑛 + 1 ) ) ) ) ∈ ℤ ) } ) |