| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							ceqp | 
							⊢ ~Qp  | 
						
						
							| 1 | 
							
								
							 | 
							vp | 
							⊢ 𝑝  | 
						
						
							| 2 | 
							
								
							 | 
							cprime | 
							⊢ ℙ  | 
						
						
							| 3 | 
							
								
							 | 
							vf | 
							⊢ 𝑓  | 
						
						
							| 4 | 
							
								
							 | 
							vg | 
							⊢ 𝑔  | 
						
						
							| 5 | 
							
								3
							 | 
							cv | 
							⊢ 𝑓  | 
						
						
							| 6 | 
							
								4
							 | 
							cv | 
							⊢ 𝑔  | 
						
						
							| 7 | 
							
								5 6
							 | 
							cpr | 
							⊢ { 𝑓 ,  𝑔 }  | 
						
						
							| 8 | 
							
								
							 | 
							cz | 
							⊢ ℤ  | 
						
						
							| 9 | 
							
								
							 | 
							cmap | 
							⊢  ↑m   | 
						
						
							| 10 | 
							
								8 8 9
							 | 
							co | 
							⊢ ( ℤ  ↑m  ℤ )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							wss | 
							⊢ { 𝑓 ,  𝑔 }  ⊆  ( ℤ  ↑m  ℤ )  | 
						
						
							| 12 | 
							
								
							 | 
							vn | 
							⊢ 𝑛  | 
						
						
							| 13 | 
							
								
							 | 
							vk | 
							⊢ 𝑘  | 
						
						
							| 14 | 
							
								
							 | 
							cuz | 
							⊢ ℤ≥  | 
						
						
							| 15 | 
							
								12
							 | 
							cv | 
							⊢ 𝑛  | 
						
						
							| 16 | 
							
								15
							 | 
							cneg | 
							⊢ - 𝑛  | 
						
						
							| 17 | 
							
								16 14
							 | 
							cfv | 
							⊢ ( ℤ≥ ‘ - 𝑛 )  | 
						
						
							| 18 | 
							
								13
							 | 
							cv | 
							⊢ 𝑘  | 
						
						
							| 19 | 
							
								18
							 | 
							cneg | 
							⊢ - 𝑘  | 
						
						
							| 20 | 
							
								19 5
							 | 
							cfv | 
							⊢ ( 𝑓 ‘ - 𝑘 )  | 
						
						
							| 21 | 
							
								
							 | 
							cmin | 
							⊢  −   | 
						
						
							| 22 | 
							
								19 6
							 | 
							cfv | 
							⊢ ( 𝑔 ‘ - 𝑘 )  | 
						
						
							| 23 | 
							
								20 22 21
							 | 
							co | 
							⊢ ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							cdiv | 
							⊢  /   | 
						
						
							| 25 | 
							
								1
							 | 
							cv | 
							⊢ 𝑝  | 
						
						
							| 26 | 
							
								
							 | 
							cexp | 
							⊢ ↑  | 
						
						
							| 27 | 
							
								
							 | 
							caddc | 
							⊢  +   | 
						
						
							| 28 | 
							
								
							 | 
							c1 | 
							⊢ 1  | 
						
						
							| 29 | 
							
								15 28 27
							 | 
							co | 
							⊢ ( 𝑛  +  1 )  | 
						
						
							| 30 | 
							
								18 29 27
							 | 
							co | 
							⊢ ( 𝑘  +  ( 𝑛  +  1 ) )  | 
						
						
							| 31 | 
							
								25 30 26
							 | 
							co | 
							⊢ ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) )  | 
						
						
							| 32 | 
							
								23 31 24
							 | 
							co | 
							⊢ ( ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  /  ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) ) )  | 
						
						
							| 33 | 
							
								17 32 13
							 | 
							csu | 
							⊢ Σ 𝑘  ∈  ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  /  ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) ) )  | 
						
						
							| 34 | 
							
								33 8
							 | 
							wcel | 
							⊢ Σ 𝑘  ∈  ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  /  ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) ) )  ∈  ℤ  | 
						
						
							| 35 | 
							
								34 12 8
							 | 
							wral | 
							⊢ ∀ 𝑛  ∈  ℤ Σ 𝑘  ∈  ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  /  ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) ) )  ∈  ℤ  | 
						
						
							| 36 | 
							
								11 35
							 | 
							wa | 
							⊢ ( { 𝑓 ,  𝑔 }  ⊆  ( ℤ  ↑m  ℤ )  ∧  ∀ 𝑛  ∈  ℤ Σ 𝑘  ∈  ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  /  ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) ) )  ∈  ℤ )  | 
						
						
							| 37 | 
							
								36 3 4
							 | 
							copab | 
							⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  ( ℤ  ↑m  ℤ )  ∧  ∀ 𝑛  ∈  ℤ Σ 𝑘  ∈  ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  /  ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) ) )  ∈  ℤ ) }  | 
						
						
							| 38 | 
							
								1 2 37
							 | 
							cmpt | 
							⊢ ( 𝑝  ∈  ℙ  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  ( ℤ  ↑m  ℤ )  ∧  ∀ 𝑛  ∈  ℤ Σ 𝑘  ∈  ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  /  ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) ) )  ∈  ℤ ) } )  | 
						
						
							| 39 | 
							
								0 38
							 | 
							wceq | 
							⊢ ~Qp  =  ( 𝑝  ∈  ℙ  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  ( ℤ  ↑m  ℤ )  ∧  ∀ 𝑛  ∈  ℤ Σ 𝑘  ∈  ( ℤ≥ ‘ - 𝑛 ) ( ( ( 𝑓 ‘ - 𝑘 )  −  ( 𝑔 ‘ - 𝑘 ) )  /  ( 𝑝 ↑ ( 𝑘  +  ( 𝑛  +  1 ) ) ) )  ∈  ℤ ) } )  |