Step |
Hyp |
Ref |
Expression |
0 |
|
ceqp |
|- ~Qp |
1 |
|
vp |
|- p |
2 |
|
cprime |
|- Prime |
3 |
|
vf |
|- f |
4 |
|
vg |
|- g |
5 |
3
|
cv |
|- f |
6 |
4
|
cv |
|- g |
7 |
5 6
|
cpr |
|- { f , g } |
8 |
|
cz |
|- ZZ |
9 |
|
cmap |
|- ^m |
10 |
8 8 9
|
co |
|- ( ZZ ^m ZZ ) |
11 |
7 10
|
wss |
|- { f , g } C_ ( ZZ ^m ZZ ) |
12 |
|
vn |
|- n |
13 |
|
vk |
|- k |
14 |
|
cuz |
|- ZZ>= |
15 |
12
|
cv |
|- n |
16 |
15
|
cneg |
|- -u n |
17 |
16 14
|
cfv |
|- ( ZZ>= ` -u n ) |
18 |
13
|
cv |
|- k |
19 |
18
|
cneg |
|- -u k |
20 |
19 5
|
cfv |
|- ( f ` -u k ) |
21 |
|
cmin |
|- - |
22 |
19 6
|
cfv |
|- ( g ` -u k ) |
23 |
20 22 21
|
co |
|- ( ( f ` -u k ) - ( g ` -u k ) ) |
24 |
|
cdiv |
|- / |
25 |
1
|
cv |
|- p |
26 |
|
cexp |
|- ^ |
27 |
|
caddc |
|- + |
28 |
|
c1 |
|- 1 |
29 |
15 28 27
|
co |
|- ( n + 1 ) |
30 |
18 29 27
|
co |
|- ( k + ( n + 1 ) ) |
31 |
25 30 26
|
co |
|- ( p ^ ( k + ( n + 1 ) ) ) |
32 |
23 31 24
|
co |
|- ( ( ( f ` -u k ) - ( g ` -u k ) ) / ( p ^ ( k + ( n + 1 ) ) ) ) |
33 |
17 32 13
|
csu |
|- sum_ k e. ( ZZ>= ` -u n ) ( ( ( f ` -u k ) - ( g ` -u k ) ) / ( p ^ ( k + ( n + 1 ) ) ) ) |
34 |
33 8
|
wcel |
|- sum_ k e. ( ZZ>= ` -u n ) ( ( ( f ` -u k ) - ( g ` -u k ) ) / ( p ^ ( k + ( n + 1 ) ) ) ) e. ZZ |
35 |
34 12 8
|
wral |
|- A. n e. ZZ sum_ k e. ( ZZ>= ` -u n ) ( ( ( f ` -u k ) - ( g ` -u k ) ) / ( p ^ ( k + ( n + 1 ) ) ) ) e. ZZ |
36 |
11 35
|
wa |
|- ( { f , g } C_ ( ZZ ^m ZZ ) /\ A. n e. ZZ sum_ k e. ( ZZ>= ` -u n ) ( ( ( f ` -u k ) - ( g ` -u k ) ) / ( p ^ ( k + ( n + 1 ) ) ) ) e. ZZ ) |
37 |
36 3 4
|
copab |
|- { <. f , g >. | ( { f , g } C_ ( ZZ ^m ZZ ) /\ A. n e. ZZ sum_ k e. ( ZZ>= ` -u n ) ( ( ( f ` -u k ) - ( g ` -u k ) ) / ( p ^ ( k + ( n + 1 ) ) ) ) e. ZZ ) } |
38 |
1 2 37
|
cmpt |
|- ( p e. Prime |-> { <. f , g >. | ( { f , g } C_ ( ZZ ^m ZZ ) /\ A. n e. ZZ sum_ k e. ( ZZ>= ` -u n ) ( ( ( f ` -u k ) - ( g ` -u k ) ) / ( p ^ ( k + ( n + 1 ) ) ) ) e. ZZ ) } ) |
39 |
0 38
|
wceq |
|- ~Qp = ( p e. Prime |-> { <. f , g >. | ( { f , g } C_ ( ZZ ^m ZZ ) /\ A. n e. ZZ sum_ k e. ( ZZ>= ` -u n ) ( ( ( f ` -u k ) - ( g ` -u k ) ) / ( p ^ ( k + ( n + 1 ) ) ) ) e. ZZ ) } ) |