| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crqp |
|- /Qp |
| 1 |
|
vp |
|- p |
| 2 |
|
cprime |
|- Prime |
| 3 |
|
ceqp |
|- ~Qp |
| 4 |
|
vf |
|- f |
| 5 |
|
cz |
|- ZZ |
| 6 |
|
cmap |
|- ^m |
| 7 |
5 5 6
|
co |
|- ( ZZ ^m ZZ ) |
| 8 |
|
vx |
|- x |
| 9 |
|
cuz |
|- ZZ>= |
| 10 |
9
|
crn |
|- ran ZZ>= |
| 11 |
4
|
cv |
|- f |
| 12 |
11
|
ccnv |
|- `' f |
| 13 |
|
cc0 |
|- 0 |
| 14 |
13
|
csn |
|- { 0 } |
| 15 |
5 14
|
cdif |
|- ( ZZ \ { 0 } ) |
| 16 |
12 15
|
cima |
|- ( `' f " ( ZZ \ { 0 } ) ) |
| 17 |
8
|
cv |
|- x |
| 18 |
16 17
|
wss |
|- ( `' f " ( ZZ \ { 0 } ) ) C_ x |
| 19 |
18 8 10
|
wrex |
|- E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x |
| 20 |
19 4 7
|
crab |
|- { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } |
| 21 |
|
vy |
|- y |
| 22 |
21
|
cv |
|- y |
| 23 |
|
cfz |
|- ... |
| 24 |
1
|
cv |
|- p |
| 25 |
|
cmin |
|- - |
| 26 |
|
c1 |
|- 1 |
| 27 |
24 26 25
|
co |
|- ( p - 1 ) |
| 28 |
13 27 23
|
co |
|- ( 0 ... ( p - 1 ) ) |
| 29 |
5 28 6
|
co |
|- ( ZZ ^m ( 0 ... ( p - 1 ) ) ) |
| 30 |
22 29
|
cin |
|- ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) |
| 31 |
22 30
|
cxp |
|- ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) |
| 32 |
21 20 31
|
csb |
|- [_ { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } / y ]_ ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) |
| 33 |
3 32
|
cin |
|- ( ~Qp i^i [_ { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } / y ]_ ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) ) |
| 34 |
1 2 33
|
cmpt |
|- ( p e. Prime |-> ( ~Qp i^i [_ { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } / y ]_ ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) ) ) |
| 35 |
0 34
|
wceq |
|- /Qp = ( p e. Prime |-> ( ~Qp i^i [_ { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } / y ]_ ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) ) ) |