| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							crqp | 
							 |-  /Qp  | 
						
						
							| 1 | 
							
								
							 | 
							vp | 
							 |-  p  | 
						
						
							| 2 | 
							
								
							 | 
							cprime | 
							 |-  Prime  | 
						
						
							| 3 | 
							
								
							 | 
							ceqp | 
							 |-  ~Qp  | 
						
						
							| 4 | 
							
								
							 | 
							vf | 
							 |-  f  | 
						
						
							| 5 | 
							
								
							 | 
							cz | 
							 |-  ZZ  | 
						
						
							| 6 | 
							
								
							 | 
							cmap | 
							 |-  ^m  | 
						
						
							| 7 | 
							
								5 5 6
							 | 
							co | 
							 |-  ( ZZ ^m ZZ )  | 
						
						
							| 8 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 9 | 
							
								
							 | 
							cuz | 
							 |-  ZZ>=  | 
						
						
							| 10 | 
							
								9
							 | 
							crn | 
							 |-  ran ZZ>=  | 
						
						
							| 11 | 
							
								4
							 | 
							cv | 
							 |-  f  | 
						
						
							| 12 | 
							
								11
							 | 
							ccnv | 
							 |-  `' f  | 
						
						
							| 13 | 
							
								
							 | 
							cc0 | 
							 |-  0  | 
						
						
							| 14 | 
							
								13
							 | 
							csn | 
							 |-  { 0 } | 
						
						
							| 15 | 
							
								5 14
							 | 
							cdif | 
							 |-  ( ZZ \ { 0 } ) | 
						
						
							| 16 | 
							
								12 15
							 | 
							cima | 
							 |-  ( `' f " ( ZZ \ { 0 } ) ) | 
						
						
							| 17 | 
							
								8
							 | 
							cv | 
							 |-  x  | 
						
						
							| 18 | 
							
								16 17
							 | 
							wss | 
							 |-  ( `' f " ( ZZ \ { 0 } ) ) C_ x | 
						
						
							| 19 | 
							
								18 8 10
							 | 
							wrex | 
							 |-  E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x | 
						
						
							| 20 | 
							
								19 4 7
							 | 
							crab | 
							 |-  { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } | 
						
						
							| 21 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 22 | 
							
								21
							 | 
							cv | 
							 |-  y  | 
						
						
							| 23 | 
							
								
							 | 
							cfz | 
							 |-  ...  | 
						
						
							| 24 | 
							
								1
							 | 
							cv | 
							 |-  p  | 
						
						
							| 25 | 
							
								
							 | 
							cmin | 
							 |-  -  | 
						
						
							| 26 | 
							
								
							 | 
							c1 | 
							 |-  1  | 
						
						
							| 27 | 
							
								24 26 25
							 | 
							co | 
							 |-  ( p - 1 )  | 
						
						
							| 28 | 
							
								13 27 23
							 | 
							co | 
							 |-  ( 0 ... ( p - 1 ) )  | 
						
						
							| 29 | 
							
								5 28 6
							 | 
							co | 
							 |-  ( ZZ ^m ( 0 ... ( p - 1 ) ) )  | 
						
						
							| 30 | 
							
								22 29
							 | 
							cin | 
							 |-  ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) )  | 
						
						
							| 31 | 
							
								22 30
							 | 
							cxp | 
							 |-  ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) )  | 
						
						
							| 32 | 
							
								21 20 31
							 | 
							csb | 
							 |-  [_ { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } / y ]_ ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) | 
						
						
							| 33 | 
							
								3 32
							 | 
							cin | 
							 |-  ( ~Qp i^i [_ { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } / y ]_ ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) ) | 
						
						
							| 34 | 
							
								1 2 33
							 | 
							cmpt | 
							 |-  ( p e. Prime |-> ( ~Qp i^i [_ { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } / y ]_ ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) ) ) | 
						
						
							| 35 | 
							
								0 34
							 | 
							wceq | 
							 |-  /Qp = ( p e. Prime |-> ( ~Qp i^i [_ { f e. ( ZZ ^m ZZ ) | E. x e. ran ZZ>= ( `' f " ( ZZ \ { 0 } ) ) C_ x } / y ]_ ( y X. ( y i^i ( ZZ ^m ( 0 ... ( p - 1 ) ) ) ) ) ) ) |