Step |
Hyp |
Ref |
Expression |
0 |
|
cqp |
|- Qp |
1 |
|
vp |
|- p |
2 |
|
cprime |
|- Prime |
3 |
|
vh |
|- h |
4 |
|
cz |
|- ZZ |
5 |
|
cmap |
|- ^m |
6 |
|
cc0 |
|- 0 |
7 |
|
cfz |
|- ... |
8 |
1
|
cv |
|- p |
9 |
|
cmin |
|- - |
10 |
|
c1 |
|- 1 |
11 |
8 10 9
|
co |
|- ( p - 1 ) |
12 |
6 11 7
|
co |
|- ( 0 ... ( p - 1 ) ) |
13 |
4 12 5
|
co |
|- ( ZZ ^m ( 0 ... ( p - 1 ) ) ) |
14 |
|
vx |
|- x |
15 |
|
cuz |
|- ZZ>= |
16 |
15
|
crn |
|- ran ZZ>= |
17 |
3
|
cv |
|- h |
18 |
17
|
ccnv |
|- `' h |
19 |
6
|
csn |
|- { 0 } |
20 |
4 19
|
cdif |
|- ( ZZ \ { 0 } ) |
21 |
18 20
|
cima |
|- ( `' h " ( ZZ \ { 0 } ) ) |
22 |
14
|
cv |
|- x |
23 |
21 22
|
wss |
|- ( `' h " ( ZZ \ { 0 } ) ) C_ x |
24 |
23 14 16
|
wrex |
|- E. x e. ran ZZ>= ( `' h " ( ZZ \ { 0 } ) ) C_ x |
25 |
24 3 13
|
crab |
|- { h e. ( ZZ ^m ( 0 ... ( p - 1 ) ) ) | E. x e. ran ZZ>= ( `' h " ( ZZ \ { 0 } ) ) C_ x } |
26 |
|
vb |
|- b |
27 |
|
cbs |
|- Base |
28 |
|
cnx |
|- ndx |
29 |
28 27
|
cfv |
|- ( Base ` ndx ) |
30 |
26
|
cv |
|- b |
31 |
29 30
|
cop |
|- <. ( Base ` ndx ) , b >. |
32 |
|
cplusg |
|- +g |
33 |
28 32
|
cfv |
|- ( +g ` ndx ) |
34 |
|
vf |
|- f |
35 |
|
vg |
|- g |
36 |
|
crqp |
|- /Qp |
37 |
8 36
|
cfv |
|- ( /Qp ` p ) |
38 |
34
|
cv |
|- f |
39 |
|
caddc |
|- + |
40 |
39
|
cof |
|- oF + |
41 |
35
|
cv |
|- g |
42 |
38 41 40
|
co |
|- ( f oF + g ) |
43 |
42 37
|
cfv |
|- ( ( /Qp ` p ) ` ( f oF + g ) ) |
44 |
34 35 30 30 43
|
cmpo |
|- ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( f oF + g ) ) ) |
45 |
33 44
|
cop |
|- <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( f oF + g ) ) ) >. |
46 |
|
cmulr |
|- .r |
47 |
28 46
|
cfv |
|- ( .r ` ndx ) |
48 |
|
vn |
|- n |
49 |
|
vk |
|- k |
50 |
49
|
cv |
|- k |
51 |
50 38
|
cfv |
|- ( f ` k ) |
52 |
|
cmul |
|- x. |
53 |
48
|
cv |
|- n |
54 |
53 50 9
|
co |
|- ( n - k ) |
55 |
54 41
|
cfv |
|- ( g ` ( n - k ) ) |
56 |
51 55 52
|
co |
|- ( ( f ` k ) x. ( g ` ( n - k ) ) ) |
57 |
4 56 49
|
csu |
|- sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) |
58 |
48 4 57
|
cmpt |
|- ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) |
59 |
58 37
|
cfv |
|- ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) |
60 |
34 35 30 30 59
|
cmpo |
|- ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) ) |
61 |
47 60
|
cop |
|- <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) ) >. |
62 |
31 45 61
|
ctp |
|- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( f oF + g ) ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) ) >. } |
63 |
|
cple |
|- le |
64 |
28 63
|
cfv |
|- ( le ` ndx ) |
65 |
38 41
|
cpr |
|- { f , g } |
66 |
65 30
|
wss |
|- { f , g } C_ b |
67 |
50
|
cneg |
|- -u k |
68 |
67 38
|
cfv |
|- ( f ` -u k ) |
69 |
8 10 39
|
co |
|- ( p + 1 ) |
70 |
|
cexp |
|- ^ |
71 |
69 67 70
|
co |
|- ( ( p + 1 ) ^ -u k ) |
72 |
68 71 52
|
co |
|- ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) |
73 |
4 72 49
|
csu |
|- sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) |
74 |
|
clt |
|- < |
75 |
67 41
|
cfv |
|- ( g ` -u k ) |
76 |
75 71 52
|
co |
|- ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) |
77 |
4 76 49
|
csu |
|- sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) |
78 |
73 77 74
|
wbr |
|- sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) |
79 |
66 78
|
wa |
|- ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) |
80 |
79 34 35
|
copab |
|- { <. f , g >. | ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) } |
81 |
64 80
|
cop |
|- <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) } >. |
82 |
81
|
csn |
|- { <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) } >. } |
83 |
62 82
|
cun |
|- ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( f oF + g ) ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) ) >. } u. { <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) } >. } ) |
84 |
|
ctng |
|- toNrmGrp |
85 |
4 19
|
cxp |
|- ( ZZ X. { 0 } ) |
86 |
38 85
|
wceq |
|- f = ( ZZ X. { 0 } ) |
87 |
38
|
ccnv |
|- `' f |
88 |
87 20
|
cima |
|- ( `' f " ( ZZ \ { 0 } ) ) |
89 |
|
cr |
|- RR |
90 |
88 89 74
|
cinf |
|- inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) |
91 |
90
|
cneg |
|- -u inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) |
92 |
8 91 70
|
co |
|- ( p ^ -u inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) ) |
93 |
86 6 92
|
cif |
|- if ( f = ( ZZ X. { 0 } ) , 0 , ( p ^ -u inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) ) ) |
94 |
34 30 93
|
cmpt |
|- ( f e. b |-> if ( f = ( ZZ X. { 0 } ) , 0 , ( p ^ -u inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) ) ) ) |
95 |
83 94 84
|
co |
|- ( ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( f oF + g ) ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) ) >. } u. { <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) } >. } ) toNrmGrp ( f e. b |-> if ( f = ( ZZ X. { 0 } ) , 0 , ( p ^ -u inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) ) ) ) ) |
96 |
26 25 95
|
csb |
|- [_ { h e. ( ZZ ^m ( 0 ... ( p - 1 ) ) ) | E. x e. ran ZZ>= ( `' h " ( ZZ \ { 0 } ) ) C_ x } / b ]_ ( ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( f oF + g ) ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) ) >. } u. { <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) } >. } ) toNrmGrp ( f e. b |-> if ( f = ( ZZ X. { 0 } ) , 0 , ( p ^ -u inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) ) ) ) ) |
97 |
1 2 96
|
cmpt |
|- ( p e. Prime |-> [_ { h e. ( ZZ ^m ( 0 ... ( p - 1 ) ) ) | E. x e. ran ZZ>= ( `' h " ( ZZ \ { 0 } ) ) C_ x } / b ]_ ( ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( f oF + g ) ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) ) >. } u. { <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) } >. } ) toNrmGrp ( f e. b |-> if ( f = ( ZZ X. { 0 } ) , 0 , ( p ^ -u inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) ) ) ) ) ) |
98 |
0 97
|
wceq |
|- Qp = ( p e. Prime |-> [_ { h e. ( ZZ ^m ( 0 ... ( p - 1 ) ) ) | E. x e. ran ZZ>= ( `' h " ( ZZ \ { 0 } ) ) C_ x } / b ]_ ( ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( f oF + g ) ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( ( /Qp ` p ) ` ( n e. ZZ |-> sum_ k e. ZZ ( ( f ` k ) x. ( g ` ( n - k ) ) ) ) ) ) >. } u. { <. ( le ` ndx ) , { <. f , g >. | ( { f , g } C_ b /\ sum_ k e. ZZ ( ( f ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) < sum_ k e. ZZ ( ( g ` -u k ) x. ( ( p + 1 ) ^ -u k ) ) ) } >. } ) toNrmGrp ( f e. b |-> if ( f = ( ZZ X. { 0 } ) , 0 , ( p ^ -u inf ( ( `' f " ( ZZ \ { 0 } ) ) , RR , < ) ) ) ) ) ) |