| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cqp |
⊢ Qp |
| 1 |
|
vp |
⊢ 𝑝 |
| 2 |
|
cprime |
⊢ ℙ |
| 3 |
|
vh |
⊢ ℎ |
| 4 |
|
cz |
⊢ ℤ |
| 5 |
|
cmap |
⊢ ↑m |
| 6 |
|
cc0 |
⊢ 0 |
| 7 |
|
cfz |
⊢ ... |
| 8 |
1
|
cv |
⊢ 𝑝 |
| 9 |
|
cmin |
⊢ − |
| 10 |
|
c1 |
⊢ 1 |
| 11 |
8 10 9
|
co |
⊢ ( 𝑝 − 1 ) |
| 12 |
6 11 7
|
co |
⊢ ( 0 ... ( 𝑝 − 1 ) ) |
| 13 |
4 12 5
|
co |
⊢ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) |
| 14 |
|
vx |
⊢ 𝑥 |
| 15 |
|
cuz |
⊢ ℤ≥ |
| 16 |
15
|
crn |
⊢ ran ℤ≥ |
| 17 |
3
|
cv |
⊢ ℎ |
| 18 |
17
|
ccnv |
⊢ ◡ ℎ |
| 19 |
6
|
csn |
⊢ { 0 } |
| 20 |
4 19
|
cdif |
⊢ ( ℤ ∖ { 0 } ) |
| 21 |
18 20
|
cima |
⊢ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) |
| 22 |
14
|
cv |
⊢ 𝑥 |
| 23 |
21 22
|
wss |
⊢ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 |
| 24 |
23 14 16
|
wrex |
⊢ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 |
| 25 |
24 3 13
|
crab |
⊢ { ℎ ∈ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) ∣ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 } |
| 26 |
|
vb |
⊢ 𝑏 |
| 27 |
|
cbs |
⊢ Base |
| 28 |
|
cnx |
⊢ ndx |
| 29 |
28 27
|
cfv |
⊢ ( Base ‘ ndx ) |
| 30 |
26
|
cv |
⊢ 𝑏 |
| 31 |
29 30
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
| 32 |
|
cplusg |
⊢ +g |
| 33 |
28 32
|
cfv |
⊢ ( +g ‘ ndx ) |
| 34 |
|
vf |
⊢ 𝑓 |
| 35 |
|
vg |
⊢ 𝑔 |
| 36 |
|
crqp |
⊢ /Qp |
| 37 |
8 36
|
cfv |
⊢ ( /Qp ‘ 𝑝 ) |
| 38 |
34
|
cv |
⊢ 𝑓 |
| 39 |
|
caddc |
⊢ + |
| 40 |
39
|
cof |
⊢ ∘f + |
| 41 |
35
|
cv |
⊢ 𝑔 |
| 42 |
38 41 40
|
co |
⊢ ( 𝑓 ∘f + 𝑔 ) |
| 43 |
42 37
|
cfv |
⊢ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) |
| 44 |
34 35 30 30 43
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) |
| 45 |
33 44
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 |
| 46 |
|
cmulr |
⊢ .r |
| 47 |
28 46
|
cfv |
⊢ ( .r ‘ ndx ) |
| 48 |
|
vn |
⊢ 𝑛 |
| 49 |
|
vk |
⊢ 𝑘 |
| 50 |
49
|
cv |
⊢ 𝑘 |
| 51 |
50 38
|
cfv |
⊢ ( 𝑓 ‘ 𝑘 ) |
| 52 |
|
cmul |
⊢ · |
| 53 |
48
|
cv |
⊢ 𝑛 |
| 54 |
53 50 9
|
co |
⊢ ( 𝑛 − 𝑘 ) |
| 55 |
54 41
|
cfv |
⊢ ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) |
| 56 |
51 55 52
|
co |
⊢ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) |
| 57 |
4 56 49
|
csu |
⊢ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) |
| 58 |
48 4 57
|
cmpt |
⊢ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) |
| 59 |
58 37
|
cfv |
⊢ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) |
| 60 |
34 35 30 30 59
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) |
| 61 |
47 60
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 |
| 62 |
31 45 61
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } |
| 63 |
|
cple |
⊢ le |
| 64 |
28 63
|
cfv |
⊢ ( le ‘ ndx ) |
| 65 |
38 41
|
cpr |
⊢ { 𝑓 , 𝑔 } |
| 66 |
65 30
|
wss |
⊢ { 𝑓 , 𝑔 } ⊆ 𝑏 |
| 67 |
50
|
cneg |
⊢ - 𝑘 |
| 68 |
67 38
|
cfv |
⊢ ( 𝑓 ‘ - 𝑘 ) |
| 69 |
8 10 39
|
co |
⊢ ( 𝑝 + 1 ) |
| 70 |
|
cexp |
⊢ ↑ |
| 71 |
69 67 70
|
co |
⊢ ( ( 𝑝 + 1 ) ↑ - 𝑘 ) |
| 72 |
68 71 52
|
co |
⊢ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
| 73 |
4 72 49
|
csu |
⊢ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
| 74 |
|
clt |
⊢ < |
| 75 |
67 41
|
cfv |
⊢ ( 𝑔 ‘ - 𝑘 ) |
| 76 |
75 71 52
|
co |
⊢ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
| 77 |
4 76 49
|
csu |
⊢ Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
| 78 |
73 77 74
|
wbr |
⊢ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
| 79 |
66 78
|
wa |
⊢ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) |
| 80 |
79 34 35
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } |
| 81 |
64 80
|
cop |
⊢ 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 |
| 82 |
81
|
csn |
⊢ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } |
| 83 |
62 82
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) |
| 84 |
|
ctng |
⊢ toNrmGrp |
| 85 |
4 19
|
cxp |
⊢ ( ℤ × { 0 } ) |
| 86 |
38 85
|
wceq |
⊢ 𝑓 = ( ℤ × { 0 } ) |
| 87 |
38
|
ccnv |
⊢ ◡ 𝑓 |
| 88 |
87 20
|
cima |
⊢ ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) |
| 89 |
|
cr |
⊢ ℝ |
| 90 |
88 89 74
|
cinf |
⊢ inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) |
| 91 |
90
|
cneg |
⊢ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) |
| 92 |
8 91 70
|
co |
⊢ ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) |
| 93 |
86 6 92
|
cif |
⊢ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) |
| 94 |
34 30 93
|
cmpt |
⊢ ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
| 95 |
83 94 84
|
co |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) toNrmGrp ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) |
| 96 |
26 25 95
|
csb |
⊢ ⦋ { ℎ ∈ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) ∣ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 } / 𝑏 ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) toNrmGrp ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) |
| 97 |
1 2 96
|
cmpt |
⊢ ( 𝑝 ∈ ℙ ↦ ⦋ { ℎ ∈ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) ∣ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 } / 𝑏 ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) toNrmGrp ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) ) |
| 98 |
0 97
|
wceq |
⊢ Qp = ( 𝑝 ∈ ℙ ↦ ⦋ { ℎ ∈ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) ∣ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 } / 𝑏 ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) toNrmGrp ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) ) |