Step |
Hyp |
Ref |
Expression |
0 |
|
cqp |
⊢ Qp |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
cprime |
⊢ ℙ |
3 |
|
vh |
⊢ ℎ |
4 |
|
cz |
⊢ ℤ |
5 |
|
cmap |
⊢ ↑m |
6 |
|
cc0 |
⊢ 0 |
7 |
|
cfz |
⊢ ... |
8 |
1
|
cv |
⊢ 𝑝 |
9 |
|
cmin |
⊢ − |
10 |
|
c1 |
⊢ 1 |
11 |
8 10 9
|
co |
⊢ ( 𝑝 − 1 ) |
12 |
6 11 7
|
co |
⊢ ( 0 ... ( 𝑝 − 1 ) ) |
13 |
4 12 5
|
co |
⊢ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) |
14 |
|
vx |
⊢ 𝑥 |
15 |
|
cuz |
⊢ ℤ≥ |
16 |
15
|
crn |
⊢ ran ℤ≥ |
17 |
3
|
cv |
⊢ ℎ |
18 |
17
|
ccnv |
⊢ ◡ ℎ |
19 |
6
|
csn |
⊢ { 0 } |
20 |
4 19
|
cdif |
⊢ ( ℤ ∖ { 0 } ) |
21 |
18 20
|
cima |
⊢ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) |
22 |
14
|
cv |
⊢ 𝑥 |
23 |
21 22
|
wss |
⊢ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 |
24 |
23 14 16
|
wrex |
⊢ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 |
25 |
24 3 13
|
crab |
⊢ { ℎ ∈ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) ∣ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 } |
26 |
|
vb |
⊢ 𝑏 |
27 |
|
cbs |
⊢ Base |
28 |
|
cnx |
⊢ ndx |
29 |
28 27
|
cfv |
⊢ ( Base ‘ ndx ) |
30 |
26
|
cv |
⊢ 𝑏 |
31 |
29 30
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
32 |
|
cplusg |
⊢ +g |
33 |
28 32
|
cfv |
⊢ ( +g ‘ ndx ) |
34 |
|
vf |
⊢ 𝑓 |
35 |
|
vg |
⊢ 𝑔 |
36 |
|
crqp |
⊢ /Qp |
37 |
8 36
|
cfv |
⊢ ( /Qp ‘ 𝑝 ) |
38 |
34
|
cv |
⊢ 𝑓 |
39 |
|
caddc |
⊢ + |
40 |
39
|
cof |
⊢ ∘f + |
41 |
35
|
cv |
⊢ 𝑔 |
42 |
38 41 40
|
co |
⊢ ( 𝑓 ∘f + 𝑔 ) |
43 |
42 37
|
cfv |
⊢ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) |
44 |
34 35 30 30 43
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) |
45 |
33 44
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 |
46 |
|
cmulr |
⊢ .r |
47 |
28 46
|
cfv |
⊢ ( .r ‘ ndx ) |
48 |
|
vn |
⊢ 𝑛 |
49 |
|
vk |
⊢ 𝑘 |
50 |
49
|
cv |
⊢ 𝑘 |
51 |
50 38
|
cfv |
⊢ ( 𝑓 ‘ 𝑘 ) |
52 |
|
cmul |
⊢ · |
53 |
48
|
cv |
⊢ 𝑛 |
54 |
53 50 9
|
co |
⊢ ( 𝑛 − 𝑘 ) |
55 |
54 41
|
cfv |
⊢ ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) |
56 |
51 55 52
|
co |
⊢ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) |
57 |
4 56 49
|
csu |
⊢ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) |
58 |
48 4 57
|
cmpt |
⊢ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) |
59 |
58 37
|
cfv |
⊢ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) |
60 |
34 35 30 30 59
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) |
61 |
47 60
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 |
62 |
31 45 61
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } |
63 |
|
cple |
⊢ le |
64 |
28 63
|
cfv |
⊢ ( le ‘ ndx ) |
65 |
38 41
|
cpr |
⊢ { 𝑓 , 𝑔 } |
66 |
65 30
|
wss |
⊢ { 𝑓 , 𝑔 } ⊆ 𝑏 |
67 |
50
|
cneg |
⊢ - 𝑘 |
68 |
67 38
|
cfv |
⊢ ( 𝑓 ‘ - 𝑘 ) |
69 |
8 10 39
|
co |
⊢ ( 𝑝 + 1 ) |
70 |
|
cexp |
⊢ ↑ |
71 |
69 67 70
|
co |
⊢ ( ( 𝑝 + 1 ) ↑ - 𝑘 ) |
72 |
68 71 52
|
co |
⊢ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
73 |
4 72 49
|
csu |
⊢ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
74 |
|
clt |
⊢ < |
75 |
67 41
|
cfv |
⊢ ( 𝑔 ‘ - 𝑘 ) |
76 |
75 71 52
|
co |
⊢ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
77 |
4 76 49
|
csu |
⊢ Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
78 |
73 77 74
|
wbr |
⊢ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) |
79 |
66 78
|
wa |
⊢ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) |
80 |
79 34 35
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } |
81 |
64 80
|
cop |
⊢ 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 |
82 |
81
|
csn |
⊢ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } |
83 |
62 82
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) |
84 |
|
ctng |
⊢ toNrmGrp |
85 |
4 19
|
cxp |
⊢ ( ℤ × { 0 } ) |
86 |
38 85
|
wceq |
⊢ 𝑓 = ( ℤ × { 0 } ) |
87 |
38
|
ccnv |
⊢ ◡ 𝑓 |
88 |
87 20
|
cima |
⊢ ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) |
89 |
|
cr |
⊢ ℝ |
90 |
88 89 74
|
cinf |
⊢ inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) |
91 |
90
|
cneg |
⊢ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) |
92 |
8 91 70
|
co |
⊢ ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) |
93 |
86 6 92
|
cif |
⊢ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) |
94 |
34 30 93
|
cmpt |
⊢ ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
95 |
83 94 84
|
co |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) toNrmGrp ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) |
96 |
26 25 95
|
csb |
⊢ ⦋ { ℎ ∈ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) ∣ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 } / 𝑏 ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) toNrmGrp ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) |
97 |
1 2 96
|
cmpt |
⊢ ( 𝑝 ∈ ℙ ↦ ⦋ { ℎ ∈ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) ∣ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 } / 𝑏 ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) toNrmGrp ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) ) |
98 |
0 97
|
wceq |
⊢ Qp = ( 𝑝 ∈ ℙ ↦ ⦋ { ℎ ∈ ( ℤ ↑m ( 0 ... ( 𝑝 − 1 ) ) ) ∣ ∃ 𝑥 ∈ ran ℤ≥ ( ◡ ℎ “ ( ℤ ∖ { 0 } ) ) ⊆ 𝑥 } / 𝑏 ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑓 ∘f + 𝑔 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ( /Qp ‘ 𝑝 ) ‘ ( 𝑛 ∈ ℤ ↦ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ 𝑘 ) · ( 𝑔 ‘ ( 𝑛 − 𝑘 ) ) ) ) ) ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑏 ∧ Σ 𝑘 ∈ ℤ ( ( 𝑓 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) < Σ 𝑘 ∈ ℤ ( ( 𝑔 ‘ - 𝑘 ) · ( ( 𝑝 + 1 ) ↑ - 𝑘 ) ) ) } 〉 } ) toNrmGrp ( 𝑓 ∈ 𝑏 ↦ if ( 𝑓 = ( ℤ × { 0 } ) , 0 , ( 𝑝 ↑ - inf ( ( ◡ 𝑓 “ ( ℤ ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) ) |