Metamath Proof Explorer


Definition df-zp

Description: Define the p -adic integers, as a subset of the p -adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-zp Zp = ( ZRing ∘ Qp )

Detailed syntax breakdown

Step Hyp Ref Expression
0 czp Zp
1 czr ZRing
2 cqp Qp
3 1 2 ccom ( ZRing ∘ Qp )
4 0 3 wceq Zp = ( ZRing ∘ Qp )