Description: Define an equivalence relation on ZZ -indexed sequences of integers such that two sequences are equivalent iff the difference is equivalent to zero, and a sequence is equivalent to zero iff the sum sum_ k <_ n f ( k ) ( p ^ k ) is a multiple of p ^ ( n + 1 ) for every n . (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-eqp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ceqp | |
|
1 | vp | |
|
2 | cprime | |
|
3 | vf | |
|
4 | vg | |
|
5 | 3 | cv | |
6 | 4 | cv | |
7 | 5 6 | cpr | |
8 | cz | |
|
9 | cmap | |
|
10 | 8 8 9 | co | |
11 | 7 10 | wss | |
12 | vn | |
|
13 | vk | |
|
14 | cuz | |
|
15 | 12 | cv | |
16 | 15 | cneg | |
17 | 16 14 | cfv | |
18 | 13 | cv | |
19 | 18 | cneg | |
20 | 19 5 | cfv | |
21 | cmin | |
|
22 | 19 6 | cfv | |
23 | 20 22 21 | co | |
24 | cdiv | |
|
25 | 1 | cv | |
26 | cexp | |
|
27 | caddc | |
|
28 | c1 | |
|
29 | 15 28 27 | co | |
30 | 18 29 27 | co | |
31 | 25 30 26 | co | |
32 | 23 31 24 | co | |
33 | 17 32 13 | csu | |
34 | 33 8 | wcel | |
35 | 34 12 8 | wral | |
36 | 11 35 | wa | |
37 | 36 3 4 | copab | |
38 | 1 2 37 | cmpt | |
39 | 0 38 | wceq | |