Metamath Proof Explorer


Definition df-eqp

Description: Define an equivalence relation on ZZ -indexed sequences of integers such that two sequences are equivalent iff the difference is equivalent to zero, and a sequence is equivalent to zero iff the sum sum_ k <_ n f ( k ) ( p ^ k ) is a multiple of p ^ ( n + 1 ) for every n . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-eqp ~p=pfg|fgnknfkgkpk+n+1

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceqp class~p
1 vp setvarp
2 cprime class
3 vf setvarf
4 vg setvarg
5 3 cv setvarf
6 4 cv setvarg
7 5 6 cpr classfg
8 cz class
9 cmap class𝑚
10 8 8 9 co class
11 7 10 wss wfffg
12 vn setvarn
13 vk setvark
14 cuz class
15 12 cv setvarn
16 15 cneg classn
17 16 14 cfv classn
18 13 cv setvark
19 18 cneg classk
20 19 5 cfv classfk
21 cmin class
22 19 6 cfv classgk
23 20 22 21 co classfkgk
24 cdiv class÷
25 1 cv setvarp
26 cexp class^
27 caddc class+
28 c1 class1
29 15 28 27 co classn+1
30 18 29 27 co classk+n+1
31 25 30 26 co classpk+n+1
32 23 31 24 co classfkgkpk+n+1
33 17 32 13 csu classknfkgkpk+n+1
34 33 8 wcel wffknfkgkpk+n+1
35 34 12 8 wral wffnknfkgkpk+n+1
36 11 35 wa wfffgnknfkgkpk+n+1
37 36 3 4 copab classfg|fgnknfkgkpk+n+1
38 1 2 37 cmpt classpfg|fgnknfkgkpk+n+1
39 0 38 wceq wff~p=pfg|fgnknfkgkpk+n+1