Metamath Proof Explorer


Definition df-esply

Description: Define elementary symmetric polynomials. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Assertion df-esply eSymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cesply eSymPoly
1 vi 𝑖
2 cvv V
3 vr 𝑟
4 vk 𝑘
5 cn0 0
6 czrh ℤRHom
7 3 cv 𝑟
8 7 6 cfv ( ℤRHom ‘ 𝑟 )
9 cind 𝟭
10 vh
11 cmap m
12 1 cv 𝑖
13 5 12 11 co ( ℕ0m 𝑖 )
14 10 cv
15 cfsupp finSupp
16 cc0 0
17 14 16 15 wbr finSupp 0
18 17 10 13 crab { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 }
19 18 9 cfv ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } )
20 12 9 cfv ( 𝟭 ‘ 𝑖 )
21 vc 𝑐
22 12 cpw 𝒫 𝑖
23 chash
24 21 cv 𝑐
25 24 23 cfv ( ♯ ‘ 𝑐 )
26 4 cv 𝑘
27 25 26 wceq ( ♯ ‘ 𝑐 ) = 𝑘
28 27 21 22 crab { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 }
29 20 28 cima ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } )
30 29 19 cfv ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) )
31 8 30 ccom ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) )
32 4 5 31 cmpt ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) )
33 1 3 2 2 32 cmpo ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) )
34 0 33 wceq eSymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) )