| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cesply |
⊢ eSymPoly |
| 1 |
|
vi |
⊢ 𝑖 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
vk |
⊢ 𝑘 |
| 5 |
|
cn0 |
⊢ ℕ0 |
| 6 |
|
czrh |
⊢ ℤRHom |
| 7 |
3
|
cv |
⊢ 𝑟 |
| 8 |
7 6
|
cfv |
⊢ ( ℤRHom ‘ 𝑟 ) |
| 9 |
|
cind |
⊢ 𝟭 |
| 10 |
|
vh |
⊢ ℎ |
| 11 |
|
cmap |
⊢ ↑m |
| 12 |
1
|
cv |
⊢ 𝑖 |
| 13 |
5 12 11
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
| 14 |
10
|
cv |
⊢ ℎ |
| 15 |
|
cfsupp |
⊢ finSupp |
| 16 |
|
cc0 |
⊢ 0 |
| 17 |
14 16 15
|
wbr |
⊢ ℎ finSupp 0 |
| 18 |
17 10 13
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } |
| 19 |
18 9
|
cfv |
⊢ ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) |
| 20 |
12 9
|
cfv |
⊢ ( 𝟭 ‘ 𝑖 ) |
| 21 |
|
vc |
⊢ 𝑐 |
| 22 |
12
|
cpw |
⊢ 𝒫 𝑖 |
| 23 |
|
chash |
⊢ ♯ |
| 24 |
21
|
cv |
⊢ 𝑐 |
| 25 |
24 23
|
cfv |
⊢ ( ♯ ‘ 𝑐 ) |
| 26 |
4
|
cv |
⊢ 𝑘 |
| 27 |
25 26
|
wceq |
⊢ ( ♯ ‘ 𝑐 ) = 𝑘 |
| 28 |
27 21 22
|
crab |
⊢ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } |
| 29 |
20 28
|
cima |
⊢ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) |
| 30 |
29 19
|
cfv |
⊢ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) |
| 31 |
8 30
|
ccom |
⊢ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) |
| 32 |
4 5 31
|
cmpt |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) |
| 33 |
1 3 2 2 32
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) |
| 34 |
0 33
|
wceq |
⊢ eSymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) |