| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cesply |
|- eSymPoly |
| 1 |
|
vi |
|- i |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vr |
|- r |
| 4 |
|
vk |
|- k |
| 5 |
|
cn0 |
|- NN0 |
| 6 |
|
czrh |
|- ZRHom |
| 7 |
3
|
cv |
|- r |
| 8 |
7 6
|
cfv |
|- ( ZRHom ` r ) |
| 9 |
|
cind |
|- _Ind |
| 10 |
|
vh |
|- h |
| 11 |
|
cmap |
|- ^m |
| 12 |
1
|
cv |
|- i |
| 13 |
5 12 11
|
co |
|- ( NN0 ^m i ) |
| 14 |
10
|
cv |
|- h |
| 15 |
|
cfsupp |
|- finSupp |
| 16 |
|
cc0 |
|- 0 |
| 17 |
14 16 15
|
wbr |
|- h finSupp 0 |
| 18 |
17 10 13
|
crab |
|- { h e. ( NN0 ^m i ) | h finSupp 0 } |
| 19 |
18 9
|
cfv |
|- ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) |
| 20 |
12 9
|
cfv |
|- ( _Ind ` i ) |
| 21 |
|
vc |
|- c |
| 22 |
12
|
cpw |
|- ~P i |
| 23 |
|
chash |
|- # |
| 24 |
21
|
cv |
|- c |
| 25 |
24 23
|
cfv |
|- ( # ` c ) |
| 26 |
4
|
cv |
|- k |
| 27 |
25 26
|
wceq |
|- ( # ` c ) = k |
| 28 |
27 21 22
|
crab |
|- { c e. ~P i | ( # ` c ) = k } |
| 29 |
20 28
|
cima |
|- ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) |
| 30 |
29 19
|
cfv |
|- ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) |
| 31 |
8 30
|
ccom |
|- ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) |
| 32 |
4 5 31
|
cmpt |
|- ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) |
| 33 |
1 3 2 2 32
|
cmpo |
|- ( i e. _V , r e. _V |-> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) ) |
| 34 |
0 33
|
wceq |
|- eSymPoly = ( i e. _V , r e. _V |-> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) ) |