| Step |
Hyp |
Ref |
Expression |
| 1 |
|
splyval.s |
|- S = ( SymGrp ` I ) |
| 2 |
|
splyval.p |
|- P = ( Base ` S ) |
| 3 |
|
splyval.m |
|- M = ( Base ` ( I mPoly R ) ) |
| 4 |
|
splyval.a |
|- A = ( d e. P , f e. M |-> ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) |
| 5 |
|
splyval.i |
|- ( ph -> I e. V ) |
| 6 |
|
splyval.r |
|- ( ph -> R e. W ) |
| 7 |
|
df-sply |
|- SymPoly = ( i e. _V , r e. _V |-> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) ) |
| 8 |
7
|
a1i |
|- ( ph -> SymPoly = ( i e. _V , r e. _V |-> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) ) ) |
| 9 |
|
oveq12 |
|- ( ( i = I /\ r = R ) -> ( i mPoly r ) = ( I mPoly R ) ) |
| 10 |
9
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = ( Base ` ( I mPoly R ) ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = M ) |
| 12 |
|
fveq2 |
|- ( i = I -> ( SymGrp ` i ) = ( SymGrp ` I ) ) |
| 13 |
12
|
adantr |
|- ( ( i = I /\ r = R ) -> ( SymGrp ` i ) = ( SymGrp ` I ) ) |
| 14 |
13 1
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( SymGrp ` i ) = S ) |
| 15 |
14
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( Base ` ( SymGrp ` i ) ) = ( Base ` S ) ) |
| 16 |
15 2
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( Base ` ( SymGrp ` i ) ) = P ) |
| 17 |
|
oveq2 |
|- ( i = I -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 18 |
17
|
adantr |
|- ( ( i = I /\ r = R ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 19 |
18
|
rabeqdv |
|- ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | h finSupp 0 } = { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 20 |
19
|
mpteq1d |
|- ( ( i = I /\ r = R ) -> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) = ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) |
| 21 |
16 11 20
|
mpoeq123dv |
|- ( ( i = I /\ r = R ) -> ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) = ( d e. P , f e. M |-> ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) |
| 22 |
21 4
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) = A ) |
| 23 |
11 22
|
oveq12d |
|- ( ( i = I /\ r = R ) -> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) = ( M FixPts A ) ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) = ( M FixPts A ) ) |
| 25 |
5
|
elexd |
|- ( ph -> I e. _V ) |
| 26 |
6
|
elexd |
|- ( ph -> R e. _V ) |
| 27 |
|
ovexd |
|- ( ph -> ( M FixPts A ) e. _V ) |
| 28 |
8 24 25 26 27
|
ovmpod |
|- ( ph -> ( I SymPoly R ) = ( M FixPts A ) ) |