| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csply |
|- SymPoly |
| 1 |
|
vi |
|- i |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vr |
|- r |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- i |
| 6 |
|
cmpl |
|- mPoly |
| 7 |
3
|
cv |
|- r |
| 8 |
5 7 6
|
co |
|- ( i mPoly r ) |
| 9 |
8 4
|
cfv |
|- ( Base ` ( i mPoly r ) ) |
| 10 |
|
cfxp |
|- FixPts |
| 11 |
|
vd |
|- d |
| 12 |
|
csymg |
|- SymGrp |
| 13 |
5 12
|
cfv |
|- ( SymGrp ` i ) |
| 14 |
13 4
|
cfv |
|- ( Base ` ( SymGrp ` i ) ) |
| 15 |
|
vf |
|- f |
| 16 |
|
vx |
|- x |
| 17 |
|
vh |
|- h |
| 18 |
|
cn0 |
|- NN0 |
| 19 |
|
cmap |
|- ^m |
| 20 |
18 5 19
|
co |
|- ( NN0 ^m i ) |
| 21 |
17
|
cv |
|- h |
| 22 |
|
cfsupp |
|- finSupp |
| 23 |
|
cc0 |
|- 0 |
| 24 |
21 23 22
|
wbr |
|- h finSupp 0 |
| 25 |
24 17 20
|
crab |
|- { h e. ( NN0 ^m i ) | h finSupp 0 } |
| 26 |
15
|
cv |
|- f |
| 27 |
16
|
cv |
|- x |
| 28 |
11
|
cv |
|- d |
| 29 |
27 28
|
ccom |
|- ( x o. d ) |
| 30 |
29 26
|
cfv |
|- ( f ` ( x o. d ) ) |
| 31 |
16 25 30
|
cmpt |
|- ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) |
| 32 |
11 15 14 9 31
|
cmpo |
|- ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) |
| 33 |
9 32 10
|
co |
|- ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) |
| 34 |
1 3 2 2 33
|
cmpo |
|- ( i e. _V , r e. _V |-> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) ) |
| 35 |
0 34
|
wceq |
|- SymPoly = ( i e. _V , r e. _V |-> ( ( Base ` ( i mPoly r ) ) FixPts ( d e. ( Base ` ( SymGrp ` i ) ) , f e. ( Base ` ( i mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) ) ) |