Metamath Proof Explorer


Definition df-sply

Description: Define symmetric polynomials. See splyval for a more readable expression. (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Assertion df-sply SymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csply SymPoly
1 vi 𝑖
2 cvv V
3 vr 𝑟
4 cbs Base
5 1 cv 𝑖
6 cmpl mPoly
7 3 cv 𝑟
8 5 7 6 co ( 𝑖 mPoly 𝑟 )
9 8 4 cfv ( Base ‘ ( 𝑖 mPoly 𝑟 ) )
10 cfxp FixPts
11 vd 𝑑
12 csymg SymGrp
13 5 12 cfv ( SymGrp ‘ 𝑖 )
14 13 4 cfv ( Base ‘ ( SymGrp ‘ 𝑖 ) )
15 vf 𝑓
16 vx 𝑥
17 vh
18 cn0 0
19 cmap m
20 18 5 19 co ( ℕ0m 𝑖 )
21 17 cv
22 cfsupp finSupp
23 cc0 0
24 21 23 22 wbr finSupp 0
25 24 17 20 crab { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 }
26 15 cv 𝑓
27 16 cv 𝑥
28 11 cv 𝑑
29 27 28 ccom ( 𝑥𝑑 )
30 29 26 cfv ( 𝑓 ‘ ( 𝑥𝑑 ) )
31 16 25 30 cmpt ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) )
32 11 15 14 9 31 cmpo ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
33 9 32 10 co ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
34 1 3 2 2 33 cmpo ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) ) )
35 0 34 wceq SymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) ) )