| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csply |
⊢ SymPoly |
| 1 |
|
vi |
⊢ 𝑖 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑖 |
| 6 |
|
cmpl |
⊢ mPoly |
| 7 |
3
|
cv |
⊢ 𝑟 |
| 8 |
5 7 6
|
co |
⊢ ( 𝑖 mPoly 𝑟 ) |
| 9 |
8 4
|
cfv |
⊢ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) |
| 10 |
|
cfxp |
⊢ FixPts |
| 11 |
|
vd |
⊢ 𝑑 |
| 12 |
|
csymg |
⊢ SymGrp |
| 13 |
5 12
|
cfv |
⊢ ( SymGrp ‘ 𝑖 ) |
| 14 |
13 4
|
cfv |
⊢ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) |
| 15 |
|
vf |
⊢ 𝑓 |
| 16 |
|
vx |
⊢ 𝑥 |
| 17 |
|
vh |
⊢ ℎ |
| 18 |
|
cn0 |
⊢ ℕ0 |
| 19 |
|
cmap |
⊢ ↑m |
| 20 |
18 5 19
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
| 21 |
17
|
cv |
⊢ ℎ |
| 22 |
|
cfsupp |
⊢ finSupp |
| 23 |
|
cc0 |
⊢ 0 |
| 24 |
21 23 22
|
wbr |
⊢ ℎ finSupp 0 |
| 25 |
24 17 20
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } |
| 26 |
15
|
cv |
⊢ 𝑓 |
| 27 |
16
|
cv |
⊢ 𝑥 |
| 28 |
11
|
cv |
⊢ 𝑑 |
| 29 |
27 28
|
ccom |
⊢ ( 𝑥 ∘ 𝑑 ) |
| 30 |
29 26
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) |
| 31 |
16 25 30
|
cmpt |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) |
| 32 |
11 15 14 9 31
|
cmpo |
⊢ ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 33 |
9 32 10
|
co |
⊢ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 34 |
1 3 2 2 33
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) ) |
| 35 |
0 34
|
wceq |
⊢ SymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) ) |