| Step |
Hyp |
Ref |
Expression |
| 1 |
|
splyval.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐼 ) |
| 2 |
|
splyval.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
splyval.m |
⊢ 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 4 |
|
splyval.a |
⊢ 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 5 |
|
splyval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
splyval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 7 |
|
df-sply |
⊢ SymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → SymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) ) ) |
| 9 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPoly 𝑟 ) = ( 𝐼 mPoly 𝑅 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 11 |
10 3
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = 𝑀 ) |
| 12 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( SymGrp ‘ 𝑖 ) = ( SymGrp ‘ 𝐼 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( SymGrp ‘ 𝑖 ) = ( SymGrp ‘ 𝐼 ) ) |
| 14 |
13 1
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( SymGrp ‘ 𝑖 ) = 𝑆 ) |
| 15 |
14
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( SymGrp ‘ 𝑖 ) ) = ( Base ‘ 𝑆 ) ) |
| 16 |
15 2
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( SymGrp ‘ 𝑖 ) ) = 𝑃 ) |
| 17 |
|
oveq2 |
⊢ ( 𝑖 = 𝐼 → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 19 |
18
|
rabeqdv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 20 |
19
|
mpteq1d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 21 |
16 11 20
|
mpoeq123dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 22 |
21 4
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) = 𝐴 ) |
| 23 |
11 22
|
oveq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) = ( 𝑀 FixPts 𝐴 ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) = ( 𝑀 FixPts 𝐴 ) ) |
| 25 |
5
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 26 |
6
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 27 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑀 FixPts 𝐴 ) ∈ V ) |
| 28 |
8 24 25 26 27
|
ovmpod |
⊢ ( 𝜑 → ( 𝐼 SymPoly 𝑅 ) = ( 𝑀 FixPts 𝐴 ) ) |