Metamath Proof Explorer


Theorem splyval

Description: The symmetric polynomials for a given index I of variables and base ring R . These are the fixed points of the action A which permutes variables. (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Hypotheses splyval.s 𝑆 = ( SymGrp ‘ 𝐼 )
splyval.p 𝑃 = ( Base ‘ 𝑆 )
splyval.m 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
splyval.a 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
splyval.i ( 𝜑𝐼𝑉 )
splyval.r ( 𝜑𝑅𝑊 )
Assertion splyval ( 𝜑 → ( 𝐼 SymPoly 𝑅 ) = ( 𝑀 FixPts 𝐴 ) )

Proof

Step Hyp Ref Expression
1 splyval.s 𝑆 = ( SymGrp ‘ 𝐼 )
2 splyval.p 𝑃 = ( Base ‘ 𝑆 )
3 splyval.m 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
4 splyval.a 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
5 splyval.i ( 𝜑𝐼𝑉 )
6 splyval.r ( 𝜑𝑅𝑊 )
7 df-sply SymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) ) )
8 7 a1i ( 𝜑 → SymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) ) ) )
9 oveq12 ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑖 mPoly 𝑟 ) = ( 𝐼 mPoly 𝑅 ) )
10 9 fveq2d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) )
11 10 3 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = 𝑀 )
12 fveq2 ( 𝑖 = 𝐼 → ( SymGrp ‘ 𝑖 ) = ( SymGrp ‘ 𝐼 ) )
13 12 adantr ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( SymGrp ‘ 𝑖 ) = ( SymGrp ‘ 𝐼 ) )
14 13 1 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( SymGrp ‘ 𝑖 ) = 𝑆 )
15 14 fveq2d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( Base ‘ ( SymGrp ‘ 𝑖 ) ) = ( Base ‘ 𝑆 ) )
16 15 2 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( Base ‘ ( SymGrp ‘ 𝑖 ) ) = 𝑃 )
17 oveq2 ( 𝑖 = 𝐼 → ( ℕ0m 𝑖 ) = ( ℕ0m 𝐼 ) )
18 17 adantr ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( ℕ0m 𝑖 ) = ( ℕ0m 𝐼 ) )
19 18 rabeqdv ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
20 19 mpteq1d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
21 16 11 20 mpoeq123dv ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
22 21 4 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) = 𝐴 )
23 11 22 oveq12d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) ) = ( 𝑀 FixPts 𝐴 ) )
24 23 adantl ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → ( ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) FixPts ( 𝑑 ∈ ( Base ‘ ( SymGrp ‘ 𝑖 ) ) , 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) ) = ( 𝑀 FixPts 𝐴 ) )
25 5 elexd ( 𝜑𝐼 ∈ V )
26 6 elexd ( 𝜑𝑅 ∈ V )
27 ovexd ( 𝜑 → ( 𝑀 FixPts 𝐴 ) ∈ V )
28 8 24 25 26 27 ovmpod ( 𝜑 → ( 𝐼 SymPoly 𝑅 ) = ( 𝑀 FixPts 𝐴 ) )