| Step |
Hyp |
Ref |
Expression |
| 1 |
|
splyval.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐼 ) |
| 2 |
|
splyval.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
splyval.m |
⊢ 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 4 |
|
splyval.a |
⊢ 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 5 |
|
splyval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
splysubrg.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
1 2 3 4 5 6
|
splyval |
⊢ ( 𝜑 → ( 𝐼 SymPoly 𝑅 ) = ( 𝑀 FixPts 𝐴 ) ) |
| 8 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑀 ↦ ( 𝑑 𝐴 𝑓 ) ) = ( 𝑓 ∈ 𝑀 ↦ ( 𝑑 𝐴 𝑓 ) ) |
| 9 |
1 2 3 4 5
|
mplvrpmga |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) ) |
| 10 |
|
coeq2 |
⊢ ( 𝑑 = 𝑒 → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑒 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑑 = 𝑒 → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑓 ‘ ( 𝑥 ∘ 𝑒 ) ) ) |
| 12 |
11
|
mpteq2dv |
⊢ ( 𝑑 = 𝑒 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑒 ) ) ) ) |
| 13 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ( 𝑥 ∘ 𝑒 ) ) = ( 𝑔 ‘ ( 𝑥 ∘ 𝑒 ) ) ) |
| 14 |
13
|
mpteq2dv |
⊢ ( 𝑓 = 𝑔 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑒 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑒 ) ) ) ) |
| 15 |
12 14
|
cbvmpov |
⊢ ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) = ( 𝑒 ∈ 𝑃 , 𝑔 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑒 ) ) ) ) |
| 16 |
4 15
|
eqtri |
⊢ 𝐴 = ( 𝑒 ∈ 𝑃 , 𝑔 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑒 ) ) ) ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑃 ) → 𝐼 ∈ 𝑉 ) |
| 18 |
|
oveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑑 𝐴 𝑓 ) = ( 𝑑 𝐴 𝑔 ) ) |
| 19 |
18
|
cbvmptv |
⊢ ( 𝑓 ∈ 𝑀 ↦ ( 𝑑 𝐴 𝑓 ) ) = ( 𝑔 ∈ 𝑀 ↦ ( 𝑑 𝐴 𝑔 ) ) |
| 20 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑃 ) → 𝑅 ∈ Ring ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑃 ) → 𝑑 ∈ 𝑃 ) |
| 23 |
1 2 3 16 17 19 20 21 22
|
mplvrpmrhm |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝑃 ) → ( 𝑓 ∈ 𝑀 ↦ ( 𝑑 𝐴 𝑓 ) ) ∈ ( ( 𝐼 mPoly 𝑅 ) RingHom ( 𝐼 mPoly 𝑅 ) ) ) |
| 24 |
2 3 8 9 23
|
fxpsubrg |
⊢ ( 𝜑 → ( 𝑀 FixPts 𝐴 ) ∈ ( SubRing ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 25 |
7 24
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐼 SymPoly 𝑅 ) ∈ ( SubRing ‘ ( 𝐼 mPoly 𝑅 ) ) ) |