Metamath Proof Explorer


Theorem mplvrpmrhm

Description: The action of permuting variables in a multivariate polynomial is a ring homomorphism. (Contributed by Thierry Arnoux, 15-Jan-2026)

Ref Expression
Hypotheses mplvrpmga.1 𝑆 = ( SymGrp ‘ 𝐼 )
mplvrpmga.2 𝑃 = ( Base ‘ 𝑆 )
mplvrpmga.3 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
mplvrpmga.4 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
mplvrpmga.5 ( 𝜑𝐼𝑉 )
mplvrpmmhm.f 𝐹 = ( 𝑓𝑀 ↦ ( 𝐷 𝐴 𝑓 ) )
mplvrpmmhm.w 𝑊 = ( 𝐼 mPoly 𝑅 )
mplvrpmmhm.1 ( 𝜑𝑅 ∈ Ring )
mplvrpmmhm.2 ( 𝜑𝐷𝑃 )
Assertion mplvrpmrhm ( 𝜑𝐹 ∈ ( 𝑊 RingHom 𝑊 ) )

Proof

Step Hyp Ref Expression
1 mplvrpmga.1 𝑆 = ( SymGrp ‘ 𝐼 )
2 mplvrpmga.2 𝑃 = ( Base ‘ 𝑆 )
3 mplvrpmga.3 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
4 mplvrpmga.4 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
5 mplvrpmga.5 ( 𝜑𝐼𝑉 )
6 mplvrpmmhm.f 𝐹 = ( 𝑓𝑀 ↦ ( 𝐷 𝐴 𝑓 ) )
7 mplvrpmmhm.w 𝑊 = ( 𝐼 mPoly 𝑅 )
8 mplvrpmmhm.1 ( 𝜑𝑅 ∈ Ring )
9 mplvrpmmhm.2 ( 𝜑𝐷𝑃 )
10 7 fveq2i ( Base ‘ 𝑊 ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
11 3 10 eqtr4i 𝑀 = ( Base ‘ 𝑊 )
12 eqid ( 1r𝑊 ) = ( 1r𝑊 )
13 eqid ( .r𝑊 ) = ( .r𝑊 )
14 7 5 8 mplringd ( 𝜑𝑊 ∈ Ring )
15 oveq2 ( 𝑓 = ( 1r𝑊 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 ( 1r𝑊 ) ) )
16 4 a1i ( 𝜑𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
17 simpr ( ( 𝑑 = 𝐷𝑓 = ( 1r𝑊 ) ) → 𝑓 = ( 1r𝑊 ) )
18 simpl ( ( 𝑑 = 𝐷𝑓 = ( 1r𝑊 ) ) → 𝑑 = 𝐷 )
19 18 coeq2d ( ( 𝑑 = 𝐷𝑓 = ( 1r𝑊 ) ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
20 17 19 fveq12d ( ( 𝑑 = 𝐷𝑓 = ( 1r𝑊 ) ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( ( 1r𝑊 ) ‘ ( 𝑥𝐷 ) ) )
21 20 ad2antlr ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 1r𝑊 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( ( 1r𝑊 ) ‘ ( 𝑥𝐷 ) ) )
22 eqid { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
23 22 psrbasfsupp { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
24 eqid ( 0g𝑅 ) = ( 0g𝑅 )
25 eqid ( 1r𝑅 ) = ( 1r𝑅 )
26 7 23 24 25 12 5 8 mpl1 ( 𝜑 → ( 1r𝑊 ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
27 26 adantr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 1r𝑊 ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
28 eqeq1 ( 𝑦 = ( 𝑥𝐷 ) → ( 𝑦 = ( 𝐼 × { 0 } ) ↔ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) )
29 9 adantr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐷𝑃 )
30 1 2 symgbasf1o ( 𝐷𝑃𝐷 : 𝐼1-1-onto𝐼 )
31 f1ococnv2 ( 𝐷 : 𝐼1-1-onto𝐼 → ( 𝐷 𝐷 ) = ( I ↾ 𝐼 ) )
32 29 30 31 3syl ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝐷 𝐷 ) = ( I ↾ 𝐼 ) )
33 32 adantr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝐷 𝐷 ) = ( I ↾ 𝐼 ) )
34 33 coeq2d ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ ( 𝐷 𝐷 ) ) = ( 𝑥 ∘ ( I ↾ 𝐼 ) ) )
35 simpr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) )
36 35 coeq1d ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → ( ( 𝑥𝐷 ) ∘ 𝐷 ) = ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) )
37 coass ( ( 𝑥𝐷 ) ∘ 𝐷 ) = ( 𝑥 ∘ ( 𝐷 𝐷 ) )
38 37 a1i ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → ( ( 𝑥𝐷 ) ∘ 𝐷 ) = ( 𝑥 ∘ ( 𝐷 𝐷 ) ) )
39 9 30 syl ( 𝜑𝐷 : 𝐼1-1-onto𝐼 )
40 f1ocnv ( 𝐷 : 𝐼1-1-onto𝐼 𝐷 : 𝐼1-1-onto𝐼 )
41 f1of ( 𝐷 : 𝐼1-1-onto𝐼 𝐷 : 𝐼𝐼 )
42 39 40 41 3syl ( 𝜑 𝐷 : 𝐼𝐼 )
43 0nn0 0 ∈ ℕ0
44 43 a1i ( 𝜑 → 0 ∈ ℕ0 )
45 42 44 constcof ( 𝜑 → ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) = ( 𝐼 × { 0 } ) )
46 45 ad2antrr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) = ( 𝐼 × { 0 } ) )
47 36 38 46 3eqtr3d ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ ( 𝐷 𝐷 ) ) = ( 𝐼 × { 0 } ) )
48 5 adantr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐼𝑉 )
49 nn0ex 0 ∈ V
50 49 a1i ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ℕ0 ∈ V )
51 ssrab2 { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⊆ ( ℕ0m 𝐼 )
52 simpr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
53 51 52 sselid ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ ( ℕ0m 𝐼 ) )
54 48 50 53 elmaprd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
55 fcoi1 ( 𝑥 : 𝐼 ⟶ ℕ0 → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 )
56 54 55 syl ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 )
57 56 adantr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 )
58 34 47 57 3eqtr3rd ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ) → 𝑥 = ( 𝐼 × { 0 } ) )
59 simpr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → 𝑥 = ( 𝐼 × { 0 } ) )
60 59 coeq1d ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → ( 𝑥𝐷 ) = ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) )
61 f1of ( 𝐷 : 𝐼1-1-onto𝐼𝐷 : 𝐼𝐼 )
62 9 30 61 3syl ( 𝜑𝐷 : 𝐼𝐼 )
63 62 44 constcof ( 𝜑 → ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) = ( 𝐼 × { 0 } ) )
64 63 ad2antrr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) = ( 𝐼 × { 0 } ) )
65 60 64 eqtrd ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) )
66 58 65 impbida ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 𝑥𝐷 ) = ( 𝐼 × { 0 } ) ↔ 𝑥 = ( 𝐼 × { 0 } ) ) )
67 28 66 sylan9bbr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 = ( 𝑥𝐷 ) ) → ( 𝑦 = ( 𝐼 × { 0 } ) ↔ 𝑥 = ( 𝐼 × { 0 } ) ) )
68 67 ifbid ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 = ( 𝑥𝐷 ) ) → if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
69 1 2 48 29 52 mplvrpmlem ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
70 fvexd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 1r𝑅 ) ∈ V )
71 fvexd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 0g𝑅 ) ∈ V )
72 70 71 ifcld ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ∈ V )
73 27 68 69 72 fvmptd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 1r𝑊 ) ‘ ( 𝑥𝐷 ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
74 73 adantlr ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 1r𝑊 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 1r𝑊 ) ‘ ( 𝑥𝐷 ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
75 21 74 eqtrd ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 1r𝑊 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
76 75 mpteq2dva ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 1r𝑊 ) ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
77 11 12 14 ringidcld ( 𝜑 → ( 1r𝑊 ) ∈ 𝑀 )
78 ovex ( ℕ0m 𝐼 ) ∈ V
79 78 rabex { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V
80 79 a1i ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V )
81 80 mptexd ( 𝜑 → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ V )
82 16 76 9 77 81 ovmpod ( 𝜑 → ( 𝐷 𝐴 ( 1r𝑊 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
83 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
84 eqid ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) )
85 83 5 8 23 24 25 84 psr1 ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
86 83 7 11 5 8 mplsubrg ( 𝜑𝑀 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) )
87 7 83 11 mplval2 𝑊 = ( ( 𝐼 mPwSer 𝑅 ) ↾s 𝑀 )
88 87 84 subrg1 ( 𝑀 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r𝑊 ) )
89 86 88 syl ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r𝑊 ) )
90 82 85 89 3eqtr2d ( 𝜑 → ( 𝐷 𝐴 ( 1r𝑊 ) ) = ( 1r𝑊 ) )
91 15 90 sylan9eqr ( ( 𝜑𝑓 = ( 1r𝑊 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 1r𝑊 ) )
92 6 91 77 77 fvmptd2 ( 𝜑 → ( 𝐹 ‘ ( 1r𝑊 ) ) = ( 1r𝑊 ) )
93 nfcv 𝑣 ( ( 𝑖 ‘ ( 𝑦𝐷 ) ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) )
94 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
95 fveq2 ( 𝑣 = ( 𝑦𝐷 ) → ( 𝑖𝑣 ) = ( 𝑖 ‘ ( 𝑦𝐷 ) ) )
96 oveq2 ( 𝑣 = ( 𝑦𝐷 ) → ( ( 𝑥𝐷 ) ∘f𝑣 ) = ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) )
97 96 fveq2d ( 𝑣 = ( 𝑦𝐷 ) → ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) = ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) )
98 95 97 oveq12d ( 𝑣 = ( 𝑦𝐷 ) → ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) = ( ( 𝑖 ‘ ( 𝑦𝐷 ) ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) ) )
99 8 ringcmnd ( 𝜑𝑅 ∈ CMnd )
100 99 ad3antrrr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑅 ∈ CMnd )
101 79 rabex { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ∈ V
102 101 a1i ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ∈ V )
103 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
104 7 83 11 103 mplbasss 𝑀 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
105 simplr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑖𝑀 )
106 104 105 sselid ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑖 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
107 106 adantr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑖 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
108 83 94 23 103 107 psrelbas ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑖 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
109 108 feqmptd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑖 = ( 𝑣 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖𝑣 ) ) )
110 105 adantr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑖𝑀 )
111 7 11 24 110 mplelsfi ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑖 finSupp ( 0g𝑅 ) )
112 109 111 eqbrtrrd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑣 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖𝑣 ) ) finSupp ( 0g𝑅 ) )
113 ssrab2 { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ⊆ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
114 113 a1i ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ⊆ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
115 fvexd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 0g𝑅 ) ∈ V )
116 112 114 115 fmptssfisupp ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( 𝑖𝑣 ) ) finSupp ( 0g𝑅 ) )
117 eqid ( .r𝑅 ) = ( .r𝑅 )
118 8 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑛 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring )
119 simpr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑛 ∈ ( Base ‘ 𝑅 ) ) → 𝑛 ∈ ( Base ‘ 𝑅 ) )
120 94 117 24 118 119 ringlzd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑛 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g𝑅 ) ( .r𝑅 ) 𝑛 ) = ( 0g𝑅 ) )
121 108 adantr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑖 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
122 elrabi ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } → 𝑣 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
123 122 adantl ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑣 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
124 121 123 ffvelcdmd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑖𝑣 ) ∈ ( Base ‘ 𝑅 ) )
125 simpr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑗𝑀 )
126 104 125 sselid ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑗 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
127 126 ad2antrr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑗 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
128 83 94 23 103 127 psrelbas ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑗 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
129 69 ad5ant14 ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑥𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
130 5 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝐼𝑉 )
131 49 a1i ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ℕ0 ∈ V )
132 51 123 sselid ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑣 ∈ ( ℕ0m 𝐼 ) )
133 130 131 132 elmaprd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑣 : 𝐼 ⟶ ℕ0 )
134 breq1 ( 𝑤 = 𝑣 → ( 𝑤r ≤ ( 𝑥𝐷 ) ↔ 𝑣r ≤ ( 𝑥𝐷 ) ) )
135 simpr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } )
136 134 135 elrabrd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑣r ≤ ( 𝑥𝐷 ) )
137 23 psrbagcon ( ( ( 𝑥𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∧ 𝑣 : 𝐼 ⟶ ℕ0𝑣r ≤ ( 𝑥𝐷 ) ) → ( ( ( 𝑥𝐷 ) ∘f𝑣 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∧ ( ( 𝑥𝐷 ) ∘f𝑣 ) ∘r ≤ ( 𝑥𝐷 ) ) )
138 129 133 136 137 syl3anc ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( ( ( 𝑥𝐷 ) ∘f𝑣 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∧ ( ( 𝑥𝐷 ) ∘f𝑣 ) ∘r ≤ ( 𝑥𝐷 ) ) )
139 138 simpld ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( ( 𝑥𝐷 ) ∘f𝑣 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
140 128 139 ffvelcdmd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ∈ ( Base ‘ 𝑅 ) )
141 116 120 124 140 115 fsuppssov1 ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) finSupp ( 0g𝑅 ) )
142 ssidd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) )
143 8 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑅 ∈ Ring )
144 94 117 143 124 140 ringcld ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ∈ ( Base ‘ 𝑅 ) )
145 breq1 ( 𝑤 = ( 𝑦𝐷 ) → ( 𝑤r ≤ ( 𝑥𝐷 ) ↔ ( 𝑦𝐷 ) ∘r ≤ ( 𝑥𝐷 ) ) )
146 5 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝐼𝑉 )
147 9 ad2antrr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝐷𝑃 )
148 147 ad2antrr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝐷𝑃 )
149 ssrab2 { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ⊆ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
150 simpr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } )
151 149 150 sselid ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
152 151 adantlr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
153 1 2 146 148 152 mplvrpmlem ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑦𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
154 49 a1i ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ℕ0 ∈ V )
155 51 a1i ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⊆ ( ℕ0m 𝐼 ) )
156 149 155 sstrid ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ⊆ ( ℕ0m 𝐼 ) )
157 156 sselda ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦 ∈ ( ℕ0m 𝐼 ) )
158 146 154 157 elmaprd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦 : 𝐼 ⟶ ℕ0 )
159 158 ffnd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦 Fn 𝐼 )
160 54 ad4ant14 ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
161 160 adantr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
162 161 ffnd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑥 Fn 𝐼 )
163 62 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝐷 : 𝐼𝐼 )
164 breq1 ( 𝑧 = 𝑦 → ( 𝑧r𝑥𝑦r𝑥 ) )
165 simpr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } )
166 164 165 elrabrd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦r𝑥 )
167 159 162 163 146 146 166 ofrco ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑦𝐷 ) ∘r ≤ ( 𝑥𝐷 ) )
168 145 153 167 elrabd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑦𝐷 ) ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } )
169 breq1 ( 𝑧 = ( 𝑣 𝐷 ) → ( 𝑧r𝑥 ↔ ( 𝑣 𝐷 ) ∘r𝑥 ) )
170 breq1 ( = ( 𝑣 𝐷 ) → ( finSupp 0 ↔ ( 𝑣 𝐷 ) finSupp 0 ) )
171 42 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝐷 : 𝐼𝐼 )
172 133 171 fcod ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑣 𝐷 ) : 𝐼 ⟶ ℕ0 )
173 131 130 172 elmapdd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑣 𝐷 ) ∈ ( ℕ0m 𝐼 ) )
174 breq1 ( = 𝑣 → ( finSupp 0 ↔ 𝑣 finSupp 0 ) )
175 174 123 elrabrd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑣 finSupp 0 )
176 39 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝐷 : 𝐼1-1-onto𝐼 )
177 f1of1 ( 𝐷 : 𝐼1-1-onto𝐼 𝐷 : 𝐼1-1𝐼 )
178 176 40 177 3syl ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝐷 : 𝐼1-1𝐼 )
179 43 a1i ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 0 ∈ ℕ0 )
180 175 178 179 123 fsuppco ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑣 𝐷 ) finSupp 0 )
181 170 173 180 elrabd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑣 𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
182 133 ffnd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑣 Fn 𝐼 )
183 160 adantr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
184 183 ffnd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝑥 Fn 𝐼 )
185 62 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → 𝐷 : 𝐼𝐼 )
186 fnfco ( ( 𝑥 Fn 𝐼𝐷 : 𝐼𝐼 ) → ( 𝑥𝐷 ) Fn 𝐼 )
187 184 185 186 syl2anc ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑥𝐷 ) Fn 𝐼 )
188 182 187 171 130 130 136 ofrco ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑣 𝐷 ) ∘r ≤ ( ( 𝑥𝐷 ) ∘ 𝐷 ) )
189 176 31 syl ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝐷 𝐷 ) = ( I ↾ 𝐼 ) )
190 189 coeq2d ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑥 ∘ ( 𝐷 𝐷 ) ) = ( 𝑥 ∘ ( I ↾ 𝐼 ) ) )
191 183 55 syl ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 )
192 190 191 eqtrd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑥 ∘ ( 𝐷 𝐷 ) ) = 𝑥 )
193 37 192 eqtrid ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( ( 𝑥𝐷 ) ∘ 𝐷 ) = 𝑥 )
194 188 193 breqtrd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑣 𝐷 ) ∘r𝑥 )
195 169 181 194 elrabd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ( 𝑣 𝐷 ) ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } )
196 133 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑣 : 𝐼 ⟶ ℕ0 )
197 158 adantlr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑦 : 𝐼 ⟶ ℕ0 )
198 39 ad5antr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝐷 : 𝐼1-1-onto𝐼 )
199 196 197 198 cocnvf1o ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑣 = ( 𝑦𝐷 ) ↔ 𝑦 = ( 𝑣 𝐷 ) ) )
200 195 199 reu6dv ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ) → ∃! 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } 𝑣 = ( 𝑦𝐷 ) )
201 93 94 24 98 100 102 141 142 144 168 200 gsummptfsf1o ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ↦ ( ( 𝑖 ‘ ( 𝑦𝐷 ) ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) ) ) ) )
202 coeq1 ( 𝑡 = 𝑦 → ( 𝑡𝐷 ) = ( 𝑦𝐷 ) )
203 202 fveq2d ( 𝑡 = 𝑦 → ( 𝑖 ‘ ( 𝑡𝐷 ) ) = ( 𝑖 ‘ ( 𝑦𝐷 ) ) )
204 oveq2 ( 𝑓 = 𝑖 → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 𝑖 ) )
205 105 adantr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑖𝑀 )
206 ovexd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝐷 𝐴 𝑖 ) ∈ V )
207 6 204 205 206 fvmptd3 ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝐹𝑖 ) = ( 𝐷 𝐴 𝑖 ) )
208 4 a1i ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
209 simpr ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → 𝑓 = 𝑖 )
210 coeq2 ( 𝑑 = 𝐷 → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
211 210 adantr ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
212 209 211 fveq12d ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑖 ‘ ( 𝑥𝐷 ) ) )
213 212 mpteq2dv ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥𝐷 ) ) ) )
214 coeq1 ( 𝑥 = 𝑡 → ( 𝑥𝐷 ) = ( 𝑡𝐷 ) )
215 214 fveq2d ( 𝑥 = 𝑡 → ( 𝑖 ‘ ( 𝑥𝐷 ) ) = ( 𝑖 ‘ ( 𝑡𝐷 ) ) )
216 215 cbvmptv ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥𝐷 ) ) ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡𝐷 ) ) )
217 213 216 eqtrdi ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡𝐷 ) ) ) )
218 217 adantl ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ ( 𝑑 = 𝐷𝑓 = 𝑖 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡𝐷 ) ) ) )
219 147 adantr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝐷𝑃 )
220 79 a1i ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V )
221 220 mptexd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡𝐷 ) ) ) ∈ V )
222 208 218 219 205 221 ovmpod ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝐷 𝐴 𝑖 ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡𝐷 ) ) ) )
223 207 222 eqtrd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝐹𝑖 ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡𝐷 ) ) ) )
224 fvexd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑖 ‘ ( 𝑦𝐷 ) ) ∈ V )
225 203 223 151 224 fvmptd4 ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( ( 𝐹𝑖 ) ‘ 𝑦 ) = ( 𝑖 ‘ ( 𝑦𝐷 ) ) )
226 225 adantlr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( ( 𝐹𝑖 ) ‘ 𝑦 ) = ( 𝑖 ‘ ( 𝑦𝐷 ) ) )
227 oveq2 ( 𝑓 = 𝑗 → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 𝑗 ) )
228 simpr ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → 𝑓 = 𝑗 )
229 210 adantr ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
230 228 229 fveq12d ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑗 ‘ ( 𝑥𝐷 ) ) )
231 230 mpteq2dv ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
232 214 fveq2d ( 𝑥 = 𝑡 → ( 𝑗 ‘ ( 𝑥𝐷 ) ) = ( 𝑗 ‘ ( 𝑡𝐷 ) ) )
233 232 cbvmptv ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) )
234 231 233 eqtrdi ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) ) )
235 234 adantl ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ ( 𝑑 = 𝐷𝑓 = 𝑗 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) ) )
236 simplr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑗𝑀 )
237 220 mptexd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) ) ∈ V )
238 208 235 219 236 237 ovmpod ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝐷 𝐴 𝑗 ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) ) )
239 227 238 sylan9eqr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑓 = 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) ) )
240 239 adantllr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑓 = 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) ) )
241 125 ad2antrr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑗𝑀 )
242 79 a1i ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V )
243 242 mptexd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) ) ∈ V )
244 6 240 241 243 fvmptd2 ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝐹𝑗 ) = ( 𝑡 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡𝐷 ) ) ) )
245 coeq1 ( 𝑡 = ( 𝑥f𝑦 ) → ( 𝑡𝐷 ) = ( ( 𝑥f𝑦 ) ∘ 𝐷 ) )
246 245 fveq2d ( 𝑡 = ( 𝑥f𝑦 ) → ( 𝑗 ‘ ( 𝑡𝐷 ) ) = ( 𝑗 ‘ ( ( 𝑥f𝑦 ) ∘ 𝐷 ) ) )
247 246 adantl ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → ( 𝑗 ‘ ( 𝑡𝐷 ) ) = ( 𝑗 ‘ ( ( 𝑥f𝑦 ) ∘ 𝐷 ) ) )
248 160 ad2antrr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → 𝑥 : 𝐼 ⟶ ℕ0 )
249 248 ffnd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → 𝑥 Fn 𝐼 )
250 5 ad5antr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → 𝐼𝑉 )
251 49 a1i ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → ℕ0 ∈ V )
252 157 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → 𝑦 ∈ ( ℕ0m 𝐼 ) )
253 250 251 252 elmaprd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → 𝑦 : 𝐼 ⟶ ℕ0 )
254 253 ffnd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → 𝑦 Fn 𝐼 )
255 62 ad5antr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → 𝐷 : 𝐼𝐼 )
256 inidm ( 𝐼𝐼 ) = 𝐼
257 249 254 255 250 250 250 256 ofco ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → ( ( 𝑥f𝑦 ) ∘ 𝐷 ) = ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) )
258 257 fveq2d ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → ( 𝑗 ‘ ( ( 𝑥f𝑦 ) ∘ 𝐷 ) ) = ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) )
259 247 258 eqtrd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑡 = ( 𝑥f𝑦 ) ) → ( 𝑗 ‘ ( 𝑡𝐷 ) ) = ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) )
260 breq1 ( = ( 𝑥f𝑦 ) → ( finSupp 0 ↔ ( 𝑥f𝑦 ) finSupp 0 ) )
261 162 159 146 146 256 offn ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑥f𝑦 ) Fn 𝐼 )
262 162 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → 𝑥 Fn 𝐼 )
263 159 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → 𝑦 Fn 𝐼 )
264 146 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → 𝐼𝑉 )
265 simpr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → 𝑎𝐼 )
266 fnfvof ( ( ( 𝑥 Fn 𝐼𝑦 Fn 𝐼 ) ∧ ( 𝐼𝑉𝑎𝐼 ) ) → ( ( 𝑥f𝑦 ) ‘ 𝑎 ) = ( ( 𝑥𝑎 ) − ( 𝑦𝑎 ) ) )
267 262 263 264 265 266 syl22anc ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → ( ( 𝑥f𝑦 ) ‘ 𝑎 ) = ( ( 𝑥𝑎 ) − ( 𝑦𝑎 ) ) )
268 158 ffvelcdmda ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → ( 𝑦𝑎 ) ∈ ℕ0 )
269 161 ffvelcdmda ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → ( 𝑥𝑎 ) ∈ ℕ0 )
270 simplr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } )
271 164 270 elrabrd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → 𝑦r𝑥 )
272 263 262 264 271 265 fnfvor ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → ( 𝑦𝑎 ) ≤ ( 𝑥𝑎 ) )
273 nn0sub ( ( ( 𝑦𝑎 ) ∈ ℕ0 ∧ ( 𝑥𝑎 ) ∈ ℕ0 ) → ( ( 𝑦𝑎 ) ≤ ( 𝑥𝑎 ) ↔ ( ( 𝑥𝑎 ) − ( 𝑦𝑎 ) ) ∈ ℕ0 ) )
274 273 biimpa ( ( ( ( 𝑦𝑎 ) ∈ ℕ0 ∧ ( 𝑥𝑎 ) ∈ ℕ0 ) ∧ ( 𝑦𝑎 ) ≤ ( 𝑥𝑎 ) ) → ( ( 𝑥𝑎 ) − ( 𝑦𝑎 ) ) ∈ ℕ0 )
275 268 269 272 274 syl21anc ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → ( ( 𝑥𝑎 ) − ( 𝑦𝑎 ) ) ∈ ℕ0 )
276 267 275 eqeltrd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎𝐼 ) → ( ( 𝑥f𝑦 ) ‘ 𝑎 ) ∈ ℕ0 )
277 276 ralrimiva ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ∀ 𝑎𝐼 ( ( 𝑥f𝑦 ) ‘ 𝑎 ) ∈ ℕ0 )
278 ffnfv ( ( 𝑥f𝑦 ) : 𝐼 ⟶ ℕ0 ↔ ( ( 𝑥f𝑦 ) Fn 𝐼 ∧ ∀ 𝑎𝐼 ( ( 𝑥f𝑦 ) ‘ 𝑎 ) ∈ ℕ0 ) )
279 261 277 278 sylanbrc ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑥f𝑦 ) : 𝐼 ⟶ ℕ0 )
280 154 146 279 elmapdd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑥f𝑦 ) ∈ ( ℕ0m 𝐼 ) )
281 ovexd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑥f𝑦 ) ∈ V )
282 43 a1i ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 0 ∈ ℕ0 )
283 162 159 146 146 offun ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → Fun ( 𝑥f𝑦 ) )
284 23 psrbagfsupp ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } → 𝑥 finSupp 0 )
285 284 ad2antlr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → 𝑥 finSupp 0 )
286 dffn2 ( ( 𝑥f𝑦 ) Fn 𝐼 ↔ ( 𝑥f𝑦 ) : 𝐼 ⟶ V )
287 261 286 sylib ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑥f𝑦 ) : 𝐼 ⟶ V )
288 162 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑥 Fn 𝐼 )
289 159 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑦 Fn 𝐼 )
290 146 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝐼𝑉 )
291 simpr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) )
292 291 eldifad ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑎𝐼 )
293 288 289 290 292 266 syl22anc ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( ( 𝑥f𝑦 ) ‘ 𝑎 ) = ( ( 𝑥𝑎 ) − ( 𝑦𝑎 ) ) )
294 43 a1i ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 0 ∈ ℕ0 )
295 288 290 294 291 fvdifsupp ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑥𝑎 ) = 0 )
296 158 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑦 : 𝐼 ⟶ ℕ0 )
297 296 292 ffvelcdmd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑦𝑎 ) ∈ ℕ0 )
298 simplr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } )
299 164 298 elrabrd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑦r𝑥 )
300 289 288 290 299 292 fnfvor ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑦𝑎 ) ≤ ( 𝑥𝑎 ) )
301 300 295 breqtrd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑦𝑎 ) ≤ 0 )
302 nn0le0eq0 ( ( 𝑦𝑎 ) ∈ ℕ0 → ( ( 𝑦𝑎 ) ≤ 0 ↔ ( 𝑦𝑎 ) = 0 ) )
303 302 biimpa ( ( ( 𝑦𝑎 ) ∈ ℕ0 ∧ ( 𝑦𝑎 ) ≤ 0 ) → ( 𝑦𝑎 ) = 0 )
304 297 301 303 syl2anc ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑦𝑎 ) = 0 )
305 295 304 oveq12d ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( ( 𝑥𝑎 ) − ( 𝑦𝑎 ) ) = ( 0 − 0 ) )
306 0m0e0 ( 0 − 0 ) = 0
307 306 a1i ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 0 − 0 ) = 0 )
308 293 305 307 3eqtrd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( ( 𝑥f𝑦 ) ‘ 𝑎 ) = 0 )
309 287 308 suppss ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( ( 𝑥f𝑦 ) supp 0 ) ⊆ ( 𝑥 supp 0 ) )
310 281 282 283 285 309 fsuppsssuppgd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑥f𝑦 ) finSupp 0 )
311 260 280 310 elrabd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑥f𝑦 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
312 fvexd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) ∈ V )
313 244 259 311 312 fvmptd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( ( 𝐹𝑗 ) ‘ ( 𝑥f𝑦 ) ) = ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) )
314 226 313 oveq12d ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ) → ( ( ( 𝐹𝑖 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( 𝐹𝑗 ) ‘ ( 𝑥f𝑦 ) ) ) = ( ( 𝑖 ‘ ( 𝑦𝐷 ) ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) ) )
315 314 mpteq2dva ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ↦ ( ( ( 𝐹𝑖 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( 𝐹𝑗 ) ‘ ( 𝑥f𝑦 ) ) ) ) = ( 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ↦ ( ( 𝑖 ‘ ( 𝑦𝐷 ) ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) ) ) )
316 315 oveq2d ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ↦ ( ( ( 𝐹𝑖 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( 𝐹𝑗 ) ‘ ( 𝑥f𝑦 ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ↦ ( ( 𝑖 ‘ ( 𝑦𝐷 ) ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f − ( 𝑦𝐷 ) ) ) ) ) ) )
317 201 316 eqtr4d ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ↦ ( ( ( 𝐹𝑖 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( 𝐹𝑗 ) ‘ ( 𝑥f𝑦 ) ) ) ) ) )
318 317 mpteq2dva ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ↦ ( ( ( 𝐹𝑖 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( 𝐹𝑗 ) ‘ ( 𝑥f𝑦 ) ) ) ) ) ) )
319 oveq2 ( 𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 ( 𝑖 ( .r𝑊 ) 𝑗 ) ) )
320 4 a1i ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
321 simprr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) → 𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) )
322 7 11 117 13 23 105 125 mplmul ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑖 ( .r𝑊 ) 𝑗 ) = ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r𝑢 } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( 𝑢f𝑣 ) ) ) ) ) ) )
323 322 adantr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) → ( 𝑖 ( .r𝑊 ) 𝑗 ) = ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r𝑢 } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( 𝑢f𝑣 ) ) ) ) ) ) )
324 321 323 eqtrd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) → 𝑓 = ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r𝑢 } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( 𝑢f𝑣 ) ) ) ) ) ) )
325 324 adantr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑓 = ( 𝑢 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r𝑢 } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( 𝑢f𝑣 ) ) ) ) ) ) )
326 simpr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → 𝑢 = ( 𝑥𝑑 ) )
327 simplrl ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑑 = 𝐷 )
328 327 adantr ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → 𝑑 = 𝐷 )
329 328 coeq2d ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
330 326 329 eqtrd ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → 𝑢 = ( 𝑥𝐷 ) )
331 330 breq2d ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → ( 𝑤r𝑢𝑤r ≤ ( 𝑥𝐷 ) ) )
332 331 rabbidv ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r𝑢 } = { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } )
333 330 fvoveq1d ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → ( 𝑗 ‘ ( 𝑢f𝑣 ) ) = ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) )
334 333 oveq2d ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( 𝑢f𝑣 ) ) ) = ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) )
335 332 334 mpteq12dv ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r𝑢 } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( 𝑢f𝑣 ) ) ) ) = ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) )
336 335 oveq2d ( ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑢 = ( 𝑥𝑑 ) ) → ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r𝑢 } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( 𝑢f𝑣 ) ) ) ) ) = ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) )
337 5 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐼𝑉 )
338 9 ad4antr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐷𝑃 )
339 327 338 eqeltrd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑑𝑃 )
340 simpr ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
341 1 2 337 339 340 mplvrpmlem ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝑑 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
342 ovexd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) ∈ V )
343 325 336 341 342 fvmptd ( ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) )
344 343 mpteq2dva ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) ) )
345 14 ad2antrr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑊 ∈ Ring )
346 11 13 345 105 125 ringcld ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑖 ( .r𝑊 ) 𝑗 ) ∈ 𝑀 )
347 79 a1i ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V )
348 347 mptexd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) ) ∈ V )
349 320 344 147 346 348 ovmpod ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐷 𝐴 ( 𝑖 ( .r𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) ) )
350 319 349 sylan9eqr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑓 = ( 𝑖 ( .r𝑊 ) 𝑗 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) ) )
351 6 350 346 348 fvmptd2 ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( .r𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑤r ≤ ( 𝑥𝐷 ) } ↦ ( ( 𝑖𝑣 ) ( .r𝑅 ) ( 𝑗 ‘ ( ( 𝑥𝐷 ) ∘f𝑣 ) ) ) ) ) ) )
352 1 2 3 4 5 mplvrpmga ( 𝜑𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) )
353 2 gaf ( 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) → 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 )
354 352 353 syl ( 𝜑𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 )
355 354 fovcld ( ( 𝜑𝐷𝑃𝑓𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 )
356 355 3expa ( ( ( 𝜑𝐷𝑃 ) ∧ 𝑓𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 )
357 356 an32s ( ( ( 𝜑𝑓𝑀 ) ∧ 𝐷𝑃 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 )
358 9 357 mpidan ( ( 𝜑𝑓𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 )
359 358 6 fmptd ( 𝜑𝐹 : 𝑀𝑀 )
360 359 ad2antrr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝐹 : 𝑀𝑀 )
361 360 105 ffvelcdmd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑖 ) ∈ 𝑀 )
362 360 125 ffvelcdmd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑗 ) ∈ 𝑀 )
363 7 11 117 13 23 361 362 mplmul ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( ( 𝐹𝑖 ) ( .r𝑊 ) ( 𝐹𝑗 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∣ 𝑧r𝑥 } ↦ ( ( ( 𝐹𝑖 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( 𝐹𝑗 ) ‘ ( 𝑥f𝑦 ) ) ) ) ) ) )
364 318 351 363 3eqtr4d ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( .r𝑊 ) 𝑗 ) ) = ( ( 𝐹𝑖 ) ( .r𝑊 ) ( 𝐹𝑗 ) ) )
365 364 anasss ( ( 𝜑 ∧ ( 𝑖𝑀𝑗𝑀 ) ) → ( 𝐹 ‘ ( 𝑖 ( .r𝑊 ) 𝑗 ) ) = ( ( 𝐹𝑖 ) ( .r𝑊 ) ( 𝐹𝑗 ) ) )
366 eqid ( +g𝑊 ) = ( +g𝑊 )
367 1 2 3 4 5 6 7 8 9 mplvrpmmhm ( 𝜑𝐹 ∈ ( 𝑊 MndHom 𝑊 ) )
368 367 ad2antrr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) )
369 11 366 366 mhmlin ( ( 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ∧ 𝑖𝑀𝑗𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g𝑊 ) 𝑗 ) ) = ( ( 𝐹𝑖 ) ( +g𝑊 ) ( 𝐹𝑗 ) ) )
370 368 105 125 369 syl3anc ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g𝑊 ) 𝑗 ) ) = ( ( 𝐹𝑖 ) ( +g𝑊 ) ( 𝐹𝑗 ) ) )
371 370 anasss ( ( 𝜑 ∧ ( 𝑖𝑀𝑗𝑀 ) ) → ( 𝐹 ‘ ( 𝑖 ( +g𝑊 ) 𝑗 ) ) = ( ( 𝐹𝑖 ) ( +g𝑊 ) ( 𝐹𝑗 ) ) )
372 11 12 12 13 13 14 14 92 365 11 366 366 359 371 isrhmd ( 𝜑𝐹 ∈ ( 𝑊 RingHom 𝑊 ) )