| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplvrpmga.1 |
⊢ 𝑆 = ( SymGrp ‘ 𝐼 ) |
| 2 |
|
mplvrpmga.2 |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
mplvrpmga.3 |
⊢ 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 4 |
|
mplvrpmga.4 |
⊢ 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 5 |
|
mplvrpmga.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
mplvrpmmhm.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝑀 ↦ ( 𝐷 𝐴 𝑓 ) ) |
| 7 |
|
mplvrpmmhm.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) |
| 8 |
|
mplvrpmmhm.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
|
mplvrpmmhm.2 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
7
|
fveq2i |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 11 |
3 10
|
eqtr4i |
⊢ 𝑀 = ( Base ‘ 𝑊 ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
| 14 |
7 5 8
|
mplringd |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 15 |
|
oveq2 |
⊢ ( 𝑓 = ( 1r ‘ 𝑊 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 ( 1r ‘ 𝑊 ) ) ) |
| 16 |
4
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) → 𝑓 = ( 1r ‘ 𝑊 ) ) |
| 18 |
|
simpl |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) → 𝑑 = 𝐷 ) |
| 19 |
18
|
coeq2d |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 20 |
17 19
|
fveq12d |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( ( 1r ‘ 𝑊 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( ( 1r ‘ 𝑊 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 22 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 23 |
22
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 26 |
7 23 24 25 12 5 8
|
mpl1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 1r ‘ 𝑊 ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 28 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝑥 ∘ 𝐷 ) → ( 𝑦 = ( 𝐼 × { 0 } ) ↔ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐷 ∈ 𝑃 ) |
| 30 |
1 2
|
symgbasf1o |
⊢ ( 𝐷 ∈ 𝑃 → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 31 |
|
f1ococnv2 |
⊢ ( 𝐷 : 𝐼 –1-1-onto→ 𝐼 → ( 𝐷 ∘ ◡ 𝐷 ) = ( I ↾ 𝐼 ) ) |
| 32 |
29 30 31
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝐷 ∘ ◡ 𝐷 ) = ( I ↾ 𝐼 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝐷 ∘ ◡ 𝐷 ) = ( I ↾ 𝐼 ) ) |
| 34 |
33
|
coeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ ( 𝐷 ∘ ◡ 𝐷 ) ) = ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) |
| 36 |
35
|
coeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → ( ( 𝑥 ∘ 𝐷 ) ∘ ◡ 𝐷 ) = ( ( 𝐼 × { 0 } ) ∘ ◡ 𝐷 ) ) |
| 37 |
|
coass |
⊢ ( ( 𝑥 ∘ 𝐷 ) ∘ ◡ 𝐷 ) = ( 𝑥 ∘ ( 𝐷 ∘ ◡ 𝐷 ) ) |
| 38 |
37
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → ( ( 𝑥 ∘ 𝐷 ) ∘ ◡ 𝐷 ) = ( 𝑥 ∘ ( 𝐷 ∘ ◡ 𝐷 ) ) ) |
| 39 |
9 30
|
syl |
⊢ ( 𝜑 → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 40 |
|
f1ocnv |
⊢ ( 𝐷 : 𝐼 –1-1-onto→ 𝐼 → ◡ 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 41 |
|
f1of |
⊢ ( ◡ 𝐷 : 𝐼 –1-1-onto→ 𝐼 → ◡ 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 42 |
39 40 41
|
3syl |
⊢ ( 𝜑 → ◡ 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 43 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 45 |
42 44
|
constcof |
⊢ ( 𝜑 → ( ( 𝐼 × { 0 } ) ∘ ◡ 𝐷 ) = ( 𝐼 × { 0 } ) ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → ( ( 𝐼 × { 0 } ) ∘ ◡ 𝐷 ) = ( 𝐼 × { 0 } ) ) |
| 47 |
36 38 46
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ ( 𝐷 ∘ ◡ 𝐷 ) ) = ( 𝐼 × { 0 } ) ) |
| 48 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 49 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 51 |
|
ssrab2 |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) |
| 52 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 53 |
51 52
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 54 |
48 50 53
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 55 |
|
fcoi1 |
⊢ ( 𝑥 : 𝐼 ⟶ ℕ0 → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 ) |
| 58 |
34 47 57
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) → 𝑥 = ( 𝐼 × { 0 } ) ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → 𝑥 = ( 𝐼 × { 0 } ) ) |
| 60 |
59
|
coeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ 𝐷 ) = ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) ) |
| 61 |
|
f1of |
⊢ ( 𝐷 : 𝐼 –1-1-onto→ 𝐼 → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 62 |
9 30 61
|
3syl |
⊢ ( 𝜑 → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 63 |
62 44
|
constcof |
⊢ ( 𝜑 → ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → ( ( 𝐼 × { 0 } ) ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) |
| 65 |
60 64
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑥 = ( 𝐼 × { 0 } ) ) → ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ) |
| 66 |
58 65
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 𝑥 ∘ 𝐷 ) = ( 𝐼 × { 0 } ) ↔ 𝑥 = ( 𝐼 × { 0 } ) ) ) |
| 67 |
28 66
|
sylan9bbr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 = ( 𝑥 ∘ 𝐷 ) ) → ( 𝑦 = ( 𝐼 × { 0 } ) ↔ 𝑥 = ( 𝐼 × { 0 } ) ) ) |
| 68 |
67
|
ifbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 = ( 𝑥 ∘ 𝐷 ) ) → if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 69 |
1 2 48 29 52
|
mplvrpmlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 70 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 1r ‘ 𝑅 ) ∈ V ) |
| 71 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 72 |
70 71
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V ) |
| 73 |
27 68 69 72
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 1r ‘ 𝑊 ) ‘ ( 𝑥 ∘ 𝐷 ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 74 |
73
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 1r ‘ 𝑊 ) ‘ ( 𝑥 ∘ 𝐷 ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 75 |
21 74
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 76 |
75
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 77 |
11 12 14
|
ringidcld |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ 𝑀 ) |
| 78 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 79 |
78
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V |
| 80 |
79
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 81 |
80
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ) |
| 82 |
16 76 9 77 81
|
ovmpod |
⊢ ( 𝜑 → ( 𝐷 𝐴 ( 1r ‘ 𝑊 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 83 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 84 |
|
eqid |
⊢ ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 85 |
83 5 8 23 24 25 84
|
psr1 |
⊢ ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 86 |
83 7 11 5 8
|
mplsubrg |
⊢ ( 𝜑 → 𝑀 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 87 |
7 83 11
|
mplval2 |
⊢ 𝑊 = ( ( 𝐼 mPwSer 𝑅 ) ↾s 𝑀 ) |
| 88 |
87 84
|
subrg1 |
⊢ ( 𝑀 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ 𝑊 ) ) |
| 89 |
86 88
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ 𝑊 ) ) |
| 90 |
82 85 89
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐷 𝐴 ( 1r ‘ 𝑊 ) ) = ( 1r ‘ 𝑊 ) ) |
| 91 |
15 90
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 1r ‘ 𝑊 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 1r ‘ 𝑊 ) ) |
| 92 |
6 91 77 77
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑊 ) ) = ( 1r ‘ 𝑊 ) ) |
| 93 |
|
nfcv |
⊢ Ⅎ 𝑣 ( ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) |
| 94 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 95 |
|
fveq2 |
⊢ ( 𝑣 = ( 𝑦 ∘ 𝐷 ) → ( 𝑖 ‘ 𝑣 ) = ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ) |
| 96 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑦 ∘ 𝐷 ) → ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) = ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) |
| 97 |
96
|
fveq2d |
⊢ ( 𝑣 = ( 𝑦 ∘ 𝐷 ) → ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) = ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) |
| 98 |
95 97
|
oveq12d |
⊢ ( 𝑣 = ( 𝑦 ∘ 𝐷 ) → ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) = ( ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) ) |
| 99 |
8
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 100 |
99
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑅 ∈ CMnd ) |
| 101 |
79
|
rabex |
⊢ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ∈ V |
| 102 |
101
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ∈ V ) |
| 103 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 104 |
7 83 11 103
|
mplbasss |
⊢ 𝑀 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 105 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑖 ∈ 𝑀 ) |
| 106 |
104 105
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑖 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 107 |
106
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑖 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 108 |
83 94 23 103 107
|
psrelbas |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑖 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 109 |
108
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑖 = ( 𝑣 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ 𝑣 ) ) ) |
| 110 |
105
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑖 ∈ 𝑀 ) |
| 111 |
7 11 24 110
|
mplelsfi |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑖 finSupp ( 0g ‘ 𝑅 ) ) |
| 112 |
109 111
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑣 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ 𝑣 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 113 |
|
ssrab2 |
⊢ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 114 |
113
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 115 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 116 |
112 114 115
|
fmptssfisupp |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( 𝑖 ‘ 𝑣 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 117 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 118 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑛 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 119 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑛 ∈ ( Base ‘ 𝑅 ) ) → 𝑛 ∈ ( Base ‘ 𝑅 ) ) |
| 120 |
94 117 24 118 119
|
ringlzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑛 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
| 121 |
108
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑖 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 122 |
|
elrabi |
⊢ ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } → 𝑣 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 123 |
122
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑣 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 124 |
121 123
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑖 ‘ 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 125 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑗 ∈ 𝑀 ) |
| 126 |
104 125
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑗 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 127 |
126
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑗 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 128 |
83 94 23 103 127
|
psrelbas |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑗 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 129 |
69
|
ad5ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑥 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 130 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝐼 ∈ 𝑉 ) |
| 131 |
49
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ℕ0 ∈ V ) |
| 132 |
51 123
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑣 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 133 |
130 131 132
|
elmaprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑣 : 𝐼 ⟶ ℕ0 ) |
| 134 |
|
breq1 |
⊢ ( 𝑤 = 𝑣 → ( 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) ↔ 𝑣 ∘r ≤ ( 𝑥 ∘ 𝐷 ) ) ) |
| 135 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) |
| 136 |
134 135
|
elrabrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑣 ∘r ≤ ( 𝑥 ∘ 𝐷 ) ) |
| 137 |
23
|
psrbagcon |
⊢ ( ( ( 𝑥 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∧ 𝑣 : 𝐼 ⟶ ℕ0 ∧ 𝑣 ∘r ≤ ( 𝑥 ∘ 𝐷 ) ) → ( ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∧ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ∘r ≤ ( 𝑥 ∘ 𝐷 ) ) ) |
| 138 |
129 133 136 137
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∧ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ∘r ≤ ( 𝑥 ∘ 𝐷 ) ) ) |
| 139 |
138
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 140 |
128 139
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 141 |
116 120 124 140 115
|
fsuppssov1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 142 |
|
ssidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 143 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑅 ∈ Ring ) |
| 144 |
94 117 143 124 140
|
ringcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 145 |
|
breq1 |
⊢ ( 𝑤 = ( 𝑦 ∘ 𝐷 ) → ( 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) ↔ ( 𝑦 ∘ 𝐷 ) ∘r ≤ ( 𝑥 ∘ 𝐷 ) ) ) |
| 146 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝐼 ∈ 𝑉 ) |
| 147 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝐷 ∈ 𝑃 ) |
| 148 |
147
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝐷 ∈ 𝑃 ) |
| 149 |
|
ssrab2 |
⊢ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 150 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) |
| 151 |
149 150
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 152 |
151
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 153 |
1 2 146 148 152
|
mplvrpmlem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑦 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 154 |
49
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ℕ0 ∈ V ) |
| 155 |
51
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 156 |
149 155
|
sstrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 157 |
156
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 158 |
146 154 157
|
elmaprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 159 |
158
|
ffnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 Fn 𝐼 ) |
| 160 |
54
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 161 |
160
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 162 |
161
|
ffnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑥 Fn 𝐼 ) |
| 163 |
62
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 164 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∘r ≤ 𝑥 ↔ 𝑦 ∘r ≤ 𝑥 ) ) |
| 165 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) |
| 166 |
164 165
|
elrabrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 ∘r ≤ 𝑥 ) |
| 167 |
159 162 163 146 146 166
|
ofrco |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑦 ∘ 𝐷 ) ∘r ≤ ( 𝑥 ∘ 𝐷 ) ) |
| 168 |
145 153 167
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑦 ∘ 𝐷 ) ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) |
| 169 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑣 ∘ ◡ 𝐷 ) → ( 𝑧 ∘r ≤ 𝑥 ↔ ( 𝑣 ∘ ◡ 𝐷 ) ∘r ≤ 𝑥 ) ) |
| 170 |
|
breq1 |
⊢ ( ℎ = ( 𝑣 ∘ ◡ 𝐷 ) → ( ℎ finSupp 0 ↔ ( 𝑣 ∘ ◡ 𝐷 ) finSupp 0 ) ) |
| 171 |
42
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ◡ 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 172 |
133 171
|
fcod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑣 ∘ ◡ 𝐷 ) : 𝐼 ⟶ ℕ0 ) |
| 173 |
131 130 172
|
elmapdd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑣 ∘ ◡ 𝐷 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 174 |
|
breq1 |
⊢ ( ℎ = 𝑣 → ( ℎ finSupp 0 ↔ 𝑣 finSupp 0 ) ) |
| 175 |
174 123
|
elrabrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑣 finSupp 0 ) |
| 176 |
39
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 177 |
|
f1of1 |
⊢ ( ◡ 𝐷 : 𝐼 –1-1-onto→ 𝐼 → ◡ 𝐷 : 𝐼 –1-1→ 𝐼 ) |
| 178 |
176 40 177
|
3syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ◡ 𝐷 : 𝐼 –1-1→ 𝐼 ) |
| 179 |
43
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 0 ∈ ℕ0 ) |
| 180 |
175 178 179 123
|
fsuppco |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑣 ∘ ◡ 𝐷 ) finSupp 0 ) |
| 181 |
170 173 180
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑣 ∘ ◡ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 182 |
133
|
ffnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑣 Fn 𝐼 ) |
| 183 |
160
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 184 |
183
|
ffnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝑥 Fn 𝐼 ) |
| 185 |
62
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 186 |
|
fnfco |
⊢ ( ( 𝑥 Fn 𝐼 ∧ 𝐷 : 𝐼 ⟶ 𝐼 ) → ( 𝑥 ∘ 𝐷 ) Fn 𝐼 ) |
| 187 |
184 185 186
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑥 ∘ 𝐷 ) Fn 𝐼 ) |
| 188 |
182 187 171 130 130 136
|
ofrco |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑣 ∘ ◡ 𝐷 ) ∘r ≤ ( ( 𝑥 ∘ 𝐷 ) ∘ ◡ 𝐷 ) ) |
| 189 |
176 31
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝐷 ∘ ◡ 𝐷 ) = ( I ↾ 𝐼 ) ) |
| 190 |
189
|
coeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑥 ∘ ( 𝐷 ∘ ◡ 𝐷 ) ) = ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) |
| 191 |
183 55
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 ) |
| 192 |
190 191
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑥 ∘ ( 𝐷 ∘ ◡ 𝐷 ) ) = 𝑥 ) |
| 193 |
37 192
|
eqtrid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( ( 𝑥 ∘ 𝐷 ) ∘ ◡ 𝐷 ) = 𝑥 ) |
| 194 |
188 193
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑣 ∘ ◡ 𝐷 ) ∘r ≤ 𝑥 ) |
| 195 |
169 181 194
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ( 𝑣 ∘ ◡ 𝐷 ) ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) |
| 196 |
133
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑣 : 𝐼 ⟶ ℕ0 ) |
| 197 |
158
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 198 |
39
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 199 |
196 197 198
|
cocnvf1o |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑣 = ( 𝑦 ∘ 𝐷 ) ↔ 𝑦 = ( 𝑣 ∘ ◡ 𝐷 ) ) ) |
| 200 |
195 199
|
reu6dv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) → ∃! 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } 𝑣 = ( 𝑦 ∘ 𝐷 ) ) |
| 201 |
93 94 24 98 100 102 141 142 144 168 200
|
gsummptfsf1o |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ↦ ( ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) ) ) ) |
| 202 |
|
coeq1 |
⊢ ( 𝑡 = 𝑦 → ( 𝑡 ∘ 𝐷 ) = ( 𝑦 ∘ 𝐷 ) ) |
| 203 |
202
|
fveq2d |
⊢ ( 𝑡 = 𝑦 → ( 𝑖 ‘ ( 𝑡 ∘ 𝐷 ) ) = ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ) |
| 204 |
|
oveq2 |
⊢ ( 𝑓 = 𝑖 → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 𝑖 ) ) |
| 205 |
105
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑖 ∈ 𝑀 ) |
| 206 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝐷 𝐴 𝑖 ) ∈ V ) |
| 207 |
6 204 205 206
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐷 𝐴 𝑖 ) ) |
| 208 |
4
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 209 |
|
simpr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → 𝑓 = 𝑖 ) |
| 210 |
|
coeq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 211 |
210
|
adantr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 212 |
209 211
|
fveq12d |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 213 |
212
|
mpteq2dv |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 214 |
|
coeq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 ∘ 𝐷 ) = ( 𝑡 ∘ 𝐷 ) ) |
| 215 |
214
|
fveq2d |
⊢ ( 𝑥 = 𝑡 → ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) = ( 𝑖 ‘ ( 𝑡 ∘ 𝐷 ) ) ) |
| 216 |
215
|
cbvmptv |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡 ∘ 𝐷 ) ) ) |
| 217 |
213 216
|
eqtrdi |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 218 |
217
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 219 |
147
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝐷 ∈ 𝑃 ) |
| 220 |
79
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 221 |
220
|
mptexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ∈ V ) |
| 222 |
208 218 219 205 221
|
ovmpod |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝐷 𝐴 𝑖 ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 223 |
207 222
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝐹 ‘ 𝑖 ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 224 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ∈ V ) |
| 225 |
203 223 151 224
|
fvmptd4 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑦 ) = ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ) |
| 226 |
225
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑦 ) = ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ) |
| 227 |
|
oveq2 |
⊢ ( 𝑓 = 𝑗 → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 𝑗 ) ) |
| 228 |
|
simpr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → 𝑓 = 𝑗 ) |
| 229 |
210
|
adantr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 230 |
228 229
|
fveq12d |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 231 |
230
|
mpteq2dv |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 232 |
214
|
fveq2d |
⊢ ( 𝑥 = 𝑡 → ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) = ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) |
| 233 |
232
|
cbvmptv |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) |
| 234 |
231 233
|
eqtrdi |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 235 |
234
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 236 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑗 ∈ 𝑀 ) |
| 237 |
220
|
mptexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ∈ V ) |
| 238 |
208 235 219 236 237
|
ovmpod |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝐷 𝐴 𝑗 ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 239 |
227 238
|
sylan9eqr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑓 = 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 240 |
239
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑓 = 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 241 |
125
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑗 ∈ 𝑀 ) |
| 242 |
79
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 243 |
242
|
mptexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ∈ V ) |
| 244 |
6 240 241 243
|
fvmptd2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝐹 ‘ 𝑗 ) = ( 𝑡 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) ) ) |
| 245 |
|
coeq1 |
⊢ ( 𝑡 = ( 𝑥 ∘f − 𝑦 ) → ( 𝑡 ∘ 𝐷 ) = ( ( 𝑥 ∘f − 𝑦 ) ∘ 𝐷 ) ) |
| 246 |
245
|
fveq2d |
⊢ ( 𝑡 = ( 𝑥 ∘f − 𝑦 ) → ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) = ( 𝑗 ‘ ( ( 𝑥 ∘f − 𝑦 ) ∘ 𝐷 ) ) ) |
| 247 |
246
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) = ( 𝑗 ‘ ( ( 𝑥 ∘f − 𝑦 ) ∘ 𝐷 ) ) ) |
| 248 |
160
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 249 |
248
|
ffnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → 𝑥 Fn 𝐼 ) |
| 250 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → 𝐼 ∈ 𝑉 ) |
| 251 |
49
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → ℕ0 ∈ V ) |
| 252 |
157
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → 𝑦 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 253 |
250 251 252
|
elmaprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 254 |
253
|
ffnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → 𝑦 Fn 𝐼 ) |
| 255 |
62
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 256 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 257 |
249 254 255 250 250 250 256
|
ofco |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → ( ( 𝑥 ∘f − 𝑦 ) ∘ 𝐷 ) = ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) |
| 258 |
257
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → ( 𝑗 ‘ ( ( 𝑥 ∘f − 𝑦 ) ∘ 𝐷 ) ) = ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) |
| 259 |
247 258
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑡 = ( 𝑥 ∘f − 𝑦 ) ) → ( 𝑗 ‘ ( 𝑡 ∘ 𝐷 ) ) = ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) |
| 260 |
|
breq1 |
⊢ ( ℎ = ( 𝑥 ∘f − 𝑦 ) → ( ℎ finSupp 0 ↔ ( 𝑥 ∘f − 𝑦 ) finSupp 0 ) ) |
| 261 |
162 159 146 146 256
|
offn |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑦 ) Fn 𝐼 ) |
| 262 |
162
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → 𝑥 Fn 𝐼 ) |
| 263 |
159
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → 𝑦 Fn 𝐼 ) |
| 264 |
146
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
| 265 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ 𝐼 ) |
| 266 |
|
fnfvof |
⊢ ( ( ( 𝑥 Fn 𝐼 ∧ 𝑦 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑉 ∧ 𝑎 ∈ 𝐼 ) ) → ( ( 𝑥 ∘f − 𝑦 ) ‘ 𝑎 ) = ( ( 𝑥 ‘ 𝑎 ) − ( 𝑦 ‘ 𝑎 ) ) ) |
| 267 |
262 263 264 265 266
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑥 ∘f − 𝑦 ) ‘ 𝑎 ) = ( ( 𝑥 ‘ 𝑎 ) − ( 𝑦 ‘ 𝑎 ) ) ) |
| 268 |
158
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑎 ) ∈ ℕ0 ) |
| 269 |
161
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑎 ) ∈ ℕ0 ) |
| 270 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) |
| 271 |
164 270
|
elrabrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → 𝑦 ∘r ≤ 𝑥 ) |
| 272 |
263 262 264 271 265
|
fnfvor |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑎 ) ≤ ( 𝑥 ‘ 𝑎 ) ) |
| 273 |
|
nn0sub |
⊢ ( ( ( 𝑦 ‘ 𝑎 ) ∈ ℕ0 ∧ ( 𝑥 ‘ 𝑎 ) ∈ ℕ0 ) → ( ( 𝑦 ‘ 𝑎 ) ≤ ( 𝑥 ‘ 𝑎 ) ↔ ( ( 𝑥 ‘ 𝑎 ) − ( 𝑦 ‘ 𝑎 ) ) ∈ ℕ0 ) ) |
| 274 |
273
|
biimpa |
⊢ ( ( ( ( 𝑦 ‘ 𝑎 ) ∈ ℕ0 ∧ ( 𝑥 ‘ 𝑎 ) ∈ ℕ0 ) ∧ ( 𝑦 ‘ 𝑎 ) ≤ ( 𝑥 ‘ 𝑎 ) ) → ( ( 𝑥 ‘ 𝑎 ) − ( 𝑦 ‘ 𝑎 ) ) ∈ ℕ0 ) |
| 275 |
268 269 272 274
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑎 ) − ( 𝑦 ‘ 𝑎 ) ) ∈ ℕ0 ) |
| 276 |
267 275
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑥 ∘f − 𝑦 ) ‘ 𝑎 ) ∈ ℕ0 ) |
| 277 |
276
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ∀ 𝑎 ∈ 𝐼 ( ( 𝑥 ∘f − 𝑦 ) ‘ 𝑎 ) ∈ ℕ0 ) |
| 278 |
|
ffnfv |
⊢ ( ( 𝑥 ∘f − 𝑦 ) : 𝐼 ⟶ ℕ0 ↔ ( ( 𝑥 ∘f − 𝑦 ) Fn 𝐼 ∧ ∀ 𝑎 ∈ 𝐼 ( ( 𝑥 ∘f − 𝑦 ) ‘ 𝑎 ) ∈ ℕ0 ) ) |
| 279 |
261 277 278
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑦 ) : 𝐼 ⟶ ℕ0 ) |
| 280 |
154 146 279
|
elmapdd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑦 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 281 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑦 ) ∈ V ) |
| 282 |
43
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 0 ∈ ℕ0 ) |
| 283 |
162 159 146 146
|
offun |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → Fun ( 𝑥 ∘f − 𝑦 ) ) |
| 284 |
23
|
psrbagfsupp |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝑥 finSupp 0 ) |
| 285 |
284
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → 𝑥 finSupp 0 ) |
| 286 |
|
dffn2 |
⊢ ( ( 𝑥 ∘f − 𝑦 ) Fn 𝐼 ↔ ( 𝑥 ∘f − 𝑦 ) : 𝐼 ⟶ V ) |
| 287 |
261 286
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑦 ) : 𝐼 ⟶ V ) |
| 288 |
162
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑥 Fn 𝐼 ) |
| 289 |
159
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑦 Fn 𝐼 ) |
| 290 |
146
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝐼 ∈ 𝑉 ) |
| 291 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) |
| 292 |
291
|
eldifad |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑎 ∈ 𝐼 ) |
| 293 |
288 289 290 292 266
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( ( 𝑥 ∘f − 𝑦 ) ‘ 𝑎 ) = ( ( 𝑥 ‘ 𝑎 ) − ( 𝑦 ‘ 𝑎 ) ) ) |
| 294 |
43
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 0 ∈ ℕ0 ) |
| 295 |
288 290 294 291
|
fvdifsupp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑥 ‘ 𝑎 ) = 0 ) |
| 296 |
158
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 297 |
296 292
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑦 ‘ 𝑎 ) ∈ ℕ0 ) |
| 298 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) |
| 299 |
164 298
|
elrabrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → 𝑦 ∘r ≤ 𝑥 ) |
| 300 |
289 288 290 299 292
|
fnfvor |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑦 ‘ 𝑎 ) ≤ ( 𝑥 ‘ 𝑎 ) ) |
| 301 |
300 295
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑦 ‘ 𝑎 ) ≤ 0 ) |
| 302 |
|
nn0le0eq0 |
⊢ ( ( 𝑦 ‘ 𝑎 ) ∈ ℕ0 → ( ( 𝑦 ‘ 𝑎 ) ≤ 0 ↔ ( 𝑦 ‘ 𝑎 ) = 0 ) ) |
| 303 |
302
|
biimpa |
⊢ ( ( ( 𝑦 ‘ 𝑎 ) ∈ ℕ0 ∧ ( 𝑦 ‘ 𝑎 ) ≤ 0 ) → ( 𝑦 ‘ 𝑎 ) = 0 ) |
| 304 |
297 301 303
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 𝑦 ‘ 𝑎 ) = 0 ) |
| 305 |
295 304
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( ( 𝑥 ‘ 𝑎 ) − ( 𝑦 ‘ 𝑎 ) ) = ( 0 − 0 ) ) |
| 306 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 307 |
306
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( 0 − 0 ) = 0 ) |
| 308 |
293 305 307
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) ∧ 𝑎 ∈ ( 𝐼 ∖ ( 𝑥 supp 0 ) ) ) → ( ( 𝑥 ∘f − 𝑦 ) ‘ 𝑎 ) = 0 ) |
| 309 |
287 308
|
suppss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑦 ) supp 0 ) ⊆ ( 𝑥 supp 0 ) ) |
| 310 |
281 282 283 285 309
|
fsuppsssuppgd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑦 ) finSupp 0 ) |
| 311 |
260 280 310
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑦 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 312 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ∈ V ) |
| 313 |
244 259 311 312
|
fvmptd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( ( 𝐹 ‘ 𝑗 ) ‘ ( 𝑥 ∘f − 𝑦 ) ) = ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) |
| 314 |
226 313
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ) → ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ ( 𝑥 ∘f − 𝑦 ) ) ) = ( ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) ) |
| 315 |
314
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ↦ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ ( 𝑥 ∘f − 𝑦 ) ) ) ) = ( 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ↦ ( ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) ) ) |
| 316 |
315
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ↦ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ ( 𝑥 ∘f − 𝑦 ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ↦ ( ( 𝑖 ‘ ( 𝑦 ∘ 𝐷 ) ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − ( 𝑦 ∘ 𝐷 ) ) ) ) ) ) ) |
| 317 |
201 316
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ↦ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ ( 𝑥 ∘f − 𝑦 ) ) ) ) ) ) |
| 318 |
317
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ↦ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ ( 𝑥 ∘f − 𝑦 ) ) ) ) ) ) ) |
| 319 |
|
oveq2 |
⊢ ( 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) |
| 320 |
4
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 321 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) → 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) |
| 322 |
7 11 117 13 23 105 125
|
mplmul |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) = ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ 𝑢 } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑢 ∘f − 𝑣 ) ) ) ) ) ) ) |
| 323 |
322
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) → ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) = ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ 𝑢 } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑢 ∘f − 𝑣 ) ) ) ) ) ) ) |
| 324 |
321 323
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) → 𝑓 = ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ 𝑢 } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑢 ∘f − 𝑣 ) ) ) ) ) ) ) |
| 325 |
324
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑓 = ( 𝑢 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ 𝑢 } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑢 ∘f − 𝑣 ) ) ) ) ) ) ) |
| 326 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → 𝑢 = ( 𝑥 ∘ 𝑑 ) ) |
| 327 |
|
simplrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑑 = 𝐷 ) |
| 328 |
327
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → 𝑑 = 𝐷 ) |
| 329 |
328
|
coeq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 330 |
326 329
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → 𝑢 = ( 𝑥 ∘ 𝐷 ) ) |
| 331 |
330
|
breq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → ( 𝑤 ∘r ≤ 𝑢 ↔ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) ) ) |
| 332 |
331
|
rabbidv |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ 𝑢 } = { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ) |
| 333 |
330
|
fvoveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → ( 𝑗 ‘ ( 𝑢 ∘f − 𝑣 ) ) = ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) |
| 334 |
333
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑢 ∘f − 𝑣 ) ) ) = ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) |
| 335 |
332 334
|
mpteq12dv |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ 𝑢 } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑢 ∘f − 𝑣 ) ) ) ) = ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) |
| 336 |
335
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑢 = ( 𝑥 ∘ 𝑑 ) ) → ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ 𝑢 } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑢 ∘f − 𝑣 ) ) ) ) ) = ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ) |
| 337 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 338 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐷 ∈ 𝑃 ) |
| 339 |
327 338
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑑 ∈ 𝑃 ) |
| 340 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 341 |
1 2 337 339 340
|
mplvrpmlem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑑 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 342 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ∈ V ) |
| 343 |
325 336 341 342
|
fvmptd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ) |
| 344 |
343
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ) ) |
| 345 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑊 ∈ Ring ) |
| 346 |
11 13 345 105 125
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ∈ 𝑀 ) |
| 347 |
79
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 348 |
347
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ) ∈ V ) |
| 349 |
320 344 147 346 348
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐷 𝐴 ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ) ) |
| 350 |
319 349
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑓 = ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ) ) |
| 351 |
6 350 346 348
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑣 ∈ { 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑤 ∘r ≤ ( 𝑥 ∘ 𝐷 ) } ↦ ( ( 𝑖 ‘ 𝑣 ) ( .r ‘ 𝑅 ) ( 𝑗 ‘ ( ( 𝑥 ∘ 𝐷 ) ∘f − 𝑣 ) ) ) ) ) ) ) |
| 352 |
1 2 3 4 5
|
mplvrpmga |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) ) |
| 353 |
2
|
gaf |
⊢ ( 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) → 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 ) |
| 354 |
352 353
|
syl |
⊢ ( 𝜑 → 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 ) |
| 355 |
354
|
fovcld |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝑃 ∧ 𝑓 ∈ 𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 ) |
| 356 |
355
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ 𝑃 ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 ) |
| 357 |
356
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) ∧ 𝐷 ∈ 𝑃 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 ) |
| 358 |
9 357
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 ) |
| 359 |
358 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑀 ⟶ 𝑀 ) |
| 360 |
359
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝐹 : 𝑀 ⟶ 𝑀 ) |
| 361 |
360 105
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑖 ) ∈ 𝑀 ) |
| 362 |
360 125
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑀 ) |
| 363 |
7 11 117 13 23 361 362
|
mplmul |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( ( 𝐹 ‘ 𝑖 ) ( .r ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑅 Σg ( 𝑦 ∈ { 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∣ 𝑧 ∘r ≤ 𝑥 } ↦ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ ( 𝑥 ∘f − 𝑦 ) ) ) ) ) ) ) |
| 364 |
318 351 363
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( .r ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 365 |
364
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑖 ( .r ‘ 𝑊 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( .r ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 366 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 367 |
1 2 3 4 5 6 7 8 9
|
mplvrpmmhm |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ) |
| 368 |
367
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ) |
| 369 |
11 366 366
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ∧ 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 370 |
368 105 125 369
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 371 |
370
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 372 |
11 12 12 13 13 14 14 92 365 11 366 366 359 371
|
isrhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑊 RingHom 𝑊 ) ) |