| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplvrpmlem.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐼 ) |
| 2 |
|
mplvrpmlem.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
mplvrpmlem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
mplvrpmlem.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 5 |
|
mplvrpmlem.1 |
⊢ ( 𝜑 → 𝑋 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 6 |
|
breq1 |
⊢ ( ℎ = ( 𝑋 ∘ 𝐷 ) → ( ℎ finSupp 0 ↔ ( 𝑋 ∘ 𝐷 ) finSupp 0 ) ) |
| 7 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 9 |
|
ssrab2 |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) |
| 10 |
9 5
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 11 |
3 8 10
|
elmaprd |
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 12 |
1 2
|
symgbasf1o |
⊢ ( 𝐷 ∈ 𝑃 → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 14 |
|
f1of |
⊢ ( 𝐷 : 𝐼 –1-1-onto→ 𝐼 → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 16 |
11 15
|
fcod |
⊢ ( 𝜑 → ( 𝑋 ∘ 𝐷 ) : 𝐼 ⟶ ℕ0 ) |
| 17 |
8 3 16
|
elmapdd |
⊢ ( 𝜑 → ( 𝑋 ∘ 𝐷 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 18 |
|
breq1 |
⊢ ( ℎ = 𝑋 → ( ℎ finSupp 0 ↔ 𝑋 finSupp 0 ) ) |
| 19 |
18
|
elrab |
⊢ ( 𝑋 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↔ ( 𝑋 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 𝑋 finSupp 0 ) ) |
| 20 |
19
|
simprbi |
⊢ ( 𝑋 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝑋 finSupp 0 ) |
| 21 |
5 20
|
syl |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
| 22 |
|
f1of1 |
⊢ ( 𝐷 : 𝐼 –1-1-onto→ 𝐼 → 𝐷 : 𝐼 –1-1→ 𝐼 ) |
| 23 |
13 22
|
syl |
⊢ ( 𝜑 → 𝐷 : 𝐼 –1-1→ 𝐼 ) |
| 24 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 26 |
21 23 25 5
|
fsuppco |
⊢ ( 𝜑 → ( 𝑋 ∘ 𝐷 ) finSupp 0 ) |
| 27 |
6 17 26
|
elrabd |
⊢ ( 𝜑 → ( 𝑋 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |