Metamath Proof Explorer


Theorem mplvrpmlem

Description: Lemma for mplvrpmga and others. (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Hypotheses mplvrpmlem.s 𝑆 = ( SymGrp ‘ 𝐼 )
mplvrpmlem.p 𝑃 = ( Base ‘ 𝑆 )
mplvrpmlem.i ( 𝜑𝐼𝑉 )
mplvrpmlem.d ( 𝜑𝐷𝑃 )
mplvrpmlem.1 ( 𝜑𝑋 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
Assertion mplvrpmlem ( 𝜑 → ( 𝑋𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )

Proof

Step Hyp Ref Expression
1 mplvrpmlem.s 𝑆 = ( SymGrp ‘ 𝐼 )
2 mplvrpmlem.p 𝑃 = ( Base ‘ 𝑆 )
3 mplvrpmlem.i ( 𝜑𝐼𝑉 )
4 mplvrpmlem.d ( 𝜑𝐷𝑃 )
5 mplvrpmlem.1 ( 𝜑𝑋 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
6 breq1 ( = ( 𝑋𝐷 ) → ( finSupp 0 ↔ ( 𝑋𝐷 ) finSupp 0 ) )
7 nn0ex 0 ∈ V
8 7 a1i ( 𝜑 → ℕ0 ∈ V )
9 ssrab2 { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⊆ ( ℕ0m 𝐼 )
10 9 5 sselid ( 𝜑𝑋 ∈ ( ℕ0m 𝐼 ) )
11 3 8 10 elmaprd ( 𝜑𝑋 : 𝐼 ⟶ ℕ0 )
12 1 2 symgbasf1o ( 𝐷𝑃𝐷 : 𝐼1-1-onto𝐼 )
13 4 12 syl ( 𝜑𝐷 : 𝐼1-1-onto𝐼 )
14 f1of ( 𝐷 : 𝐼1-1-onto𝐼𝐷 : 𝐼𝐼 )
15 13 14 syl ( 𝜑𝐷 : 𝐼𝐼 )
16 11 15 fcod ( 𝜑 → ( 𝑋𝐷 ) : 𝐼 ⟶ ℕ0 )
17 8 3 16 elmapdd ( 𝜑 → ( 𝑋𝐷 ) ∈ ( ℕ0m 𝐼 ) )
18 breq1 ( = 𝑋 → ( finSupp 0 ↔ 𝑋 finSupp 0 ) )
19 18 elrab ( 𝑋 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↔ ( 𝑋 ∈ ( ℕ0m 𝐼 ) ∧ 𝑋 finSupp 0 ) )
20 19 simprbi ( 𝑋 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } → 𝑋 finSupp 0 )
21 5 20 syl ( 𝜑𝑋 finSupp 0 )
22 f1of1 ( 𝐷 : 𝐼1-1-onto𝐼𝐷 : 𝐼1-1𝐼 )
23 13 22 syl ( 𝜑𝐷 : 𝐼1-1𝐼 )
24 0nn0 0 ∈ ℕ0
25 24 a1i ( 𝜑 → 0 ∈ ℕ0 )
26 21 23 25 5 fsuppco ( 𝜑 → ( 𝑋𝐷 ) finSupp 0 )
27 6 17 26 elrabd ( 𝜑 → ( 𝑋𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )