| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplvrpmga.1 |
⊢ 𝑆 = ( SymGrp ‘ 𝐼 ) |
| 2 |
|
mplvrpmga.2 |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
mplvrpmga.3 |
⊢ 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 4 |
|
mplvrpmga.4 |
⊢ 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 5 |
|
mplvrpmga.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
mplvrpmfgalem.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 7 |
|
mplvrpmfgalem.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑀 ) |
| 8 |
|
mplvrpmfgalem.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
| 9 |
4
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝑑 = 𝑄 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
| 11 |
|
coeq2 |
⊢ ( 𝑑 = 𝑄 → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑄 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑑 = 𝑄 ∧ 𝑓 = 𝐹 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑄 ) ) |
| 13 |
10 12
|
fveq12d |
⊢ ( ( 𝑑 = 𝑄 ∧ 𝑓 = 𝐹 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝐹 ‘ ( 𝑥 ∘ 𝑄 ) ) ) |
| 14 |
13
|
mpteq2dv |
⊢ ( ( 𝑑 = 𝑄 ∧ 𝑓 = 𝐹 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑄 ) ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑑 = 𝑄 ∧ 𝑓 = 𝐹 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑄 ) ) ) ) |
| 16 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 17 |
16
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 19 |
18
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑄 ) ) ) ∈ V ) |
| 20 |
9 15 8 7 19
|
ovmpod |
⊢ ( 𝜑 → ( 𝑄 𝐴 𝐹 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑄 ) ) ) ) |
| 21 |
|
breq1 |
⊢ ( ℎ = ( 𝑥 ∘ 𝑄 ) → ( ℎ finSupp 0 ↔ ( 𝑥 ∘ 𝑄 ) finSupp 0 ) ) |
| 22 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 25 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 26 |
25
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 27 |
26
|
psrbagf |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 29 |
1 2
|
symgbasf1o |
⊢ ( 𝑄 ∈ 𝑃 → 𝑄 : 𝐼 –1-1-onto→ 𝐼 ) |
| 30 |
8 29
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐼 –1-1-onto→ 𝐼 ) |
| 31 |
|
f1of |
⊢ ( 𝑄 : 𝐼 –1-1-onto→ 𝐼 → 𝑄 : 𝐼 ⟶ 𝐼 ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐼 ⟶ 𝐼 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑄 : 𝐼 ⟶ 𝐼 ) |
| 34 |
28 33
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑄 ) : 𝐼 ⟶ ℕ0 ) |
| 35 |
23 24 34
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑄 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 36 |
26
|
psrbagfsupp |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝑥 finSupp 0 ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 finSupp 0 ) |
| 38 |
|
f1of1 |
⊢ ( 𝑄 : 𝐼 –1-1-onto→ 𝐼 → 𝑄 : 𝐼 –1-1→ 𝐼 ) |
| 39 |
30 38
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐼 –1-1→ 𝐼 ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑄 : 𝐼 –1-1→ 𝐼 ) |
| 41 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 0 ∈ ℕ0 ) |
| 43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 44 |
37 40 42 43
|
fsuppco |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑄 ) finSupp 0 ) |
| 45 |
21 35 44
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑄 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 46 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑥 ∘ 𝑄 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑥 ∘ 𝑄 ) ) ) |
| 47 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 ∘ 𝑄 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑥 ∘ 𝑄 ) ) ) |
| 49 |
45 46 47 48
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑥 ∘ 𝑄 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑄 ) ) ) ) |
| 50 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 51 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 52 |
50 51 3 26 7
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 53 |
52
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 54 |
50 3 6 7
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 55 |
53 54
|
breq1dd |
⊢ ( 𝜑 → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑦 ) ) finSupp 0 ) |
| 56 |
22
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 57 |
41
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 58 |
|
breq1 |
⊢ ( ℎ = 𝑔 → ( ℎ finSupp 0 ↔ 𝑔 finSupp 0 ) ) |
| 59 |
58
|
cbvrabv |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { 𝑔 ∈ ( ℕ0 ↑m 𝐼 ) ∣ 𝑔 finSupp 0 } |
| 60 |
30 5 5 56 57 25 59
|
fcobijfs2 |
⊢ ( 𝜑 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑥 ∘ 𝑄 ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } –1-1-onto→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 61 |
|
f1of1 |
⊢ ( ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑥 ∘ 𝑄 ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } –1-1-onto→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑥 ∘ 𝑄 ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } –1-1→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 62 |
60 61
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑥 ∘ 𝑄 ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } –1-1→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 63 |
6
|
fvexi |
⊢ 0 ∈ V |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 65 |
18
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ V ) |
| 66 |
55 62 64 65
|
fsuppco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑥 ∘ 𝑄 ) ) ) finSupp 0 ) |
| 67 |
49 66
|
breq1dd |
⊢ ( 𝜑 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑄 ) ) ) finSupp 0 ) |
| 68 |
20 67
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑄 𝐴 𝐹 ) finSupp 0 ) |