| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplvrpmga.1 |
⊢ 𝑆 = ( SymGrp ‘ 𝐼 ) |
| 2 |
|
mplvrpmga.2 |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
mplvrpmga.3 |
⊢ 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 4 |
|
mplvrpmga.4 |
⊢ 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 5 |
|
mplvrpmga.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
1
|
symggrp |
⊢ ( 𝐼 ∈ 𝑉 → 𝑆 ∈ Grp ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 8 |
3
|
fvexi |
⊢ 𝑀 ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 10 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( Base ‘ 𝑅 ) ∈ V ) |
| 11 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 12 |
11
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 14 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 17 |
16
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 18 |
|
xp2nd |
⊢ ( 𝑐 ∈ ( 𝑃 × 𝑀 ) → ( 2nd ‘ 𝑐 ) ∈ 𝑀 ) |
| 19 |
18
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 2nd ‘ 𝑐 ) ∈ 𝑀 ) |
| 20 |
14 15 3 17 19
|
mplelf |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 2nd ‘ 𝑐 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 21 |
|
breq1 |
⊢ ( ℎ = ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) → ( ℎ finSupp 0 ↔ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) finSupp 0 ) ) |
| 22 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 23 |
22
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 25 |
|
ssrab2 |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) |
| 26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 27 |
26
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 28 |
24 23 27
|
elmaprd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 29 |
|
xp1st |
⊢ ( 𝑐 ∈ ( 𝑃 × 𝑀 ) → ( 1st ‘ 𝑐 ) ∈ 𝑃 ) |
| 30 |
29
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 1st ‘ 𝑐 ) ∈ 𝑃 ) |
| 31 |
1 2
|
symgbasf |
⊢ ( ( 1st ‘ 𝑐 ) ∈ 𝑃 → ( 1st ‘ 𝑐 ) : 𝐼 ⟶ 𝐼 ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 1st ‘ 𝑐 ) : 𝐼 ⟶ 𝐼 ) |
| 33 |
28 32
|
fcod |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) : 𝐼 ⟶ ℕ0 ) |
| 34 |
23 24 33
|
elmapdd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 36 |
|
breq1 |
⊢ ( ℎ = 𝑥 → ( ℎ finSupp 0 ↔ 𝑥 finSupp 0 ) ) |
| 37 |
36
|
elrab |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↔ ( 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 𝑥 finSupp 0 ) ) |
| 38 |
35 37
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 𝑥 finSupp 0 ) ) |
| 39 |
38
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 finSupp 0 ) |
| 40 |
1 2
|
symgbasf1o |
⊢ ( ( 1st ‘ 𝑐 ) ∈ 𝑃 → ( 1st ‘ 𝑐 ) : 𝐼 –1-1-onto→ 𝐼 ) |
| 41 |
|
f1of1 |
⊢ ( ( 1st ‘ 𝑐 ) : 𝐼 –1-1-onto→ 𝐼 → ( 1st ‘ 𝑐 ) : 𝐼 –1-1→ 𝐼 ) |
| 42 |
30 40 41
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 1st ‘ 𝑐 ) : 𝐼 –1-1→ 𝐼 ) |
| 43 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 44 |
43
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 0 ∈ ℕ0 ) |
| 45 |
39 42 44 35
|
fsuppco |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) finSupp 0 ) |
| 46 |
21 34 45
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 47 |
20 46
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 48 |
47
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 49 |
10 13 48
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
| 50 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 51 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 52 |
50 15 17 51 5
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
| 54 |
49 53
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 55 |
|
coeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) = ( 𝑦 ∘ ( 1st ‘ 𝑐 ) ) ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) = ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ ( 1st ‘ 𝑐 ) ) ) ) |
| 57 |
56
|
cbvmptv |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ ( 1st ‘ 𝑐 ) ) ) ) |
| 58 |
|
fveq1 |
⊢ ( 𝑔 = ( 2nd ‘ 𝑐 ) → ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) = ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ 𝑞 ) ) ) |
| 59 |
58
|
mpteq2dv |
⊢ ( 𝑔 = ( 2nd ‘ 𝑐 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) |
| 60 |
59
|
breq1d |
⊢ ( 𝑔 = ( 2nd ‘ 𝑐 ) → ( ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ↔ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 61 |
|
coeq2 |
⊢ ( 𝑞 = ( 1st ‘ 𝑐 ) → ( 𝑦 ∘ 𝑞 ) = ( 𝑦 ∘ ( 1st ‘ 𝑐 ) ) ) |
| 62 |
61
|
fveq2d |
⊢ ( 𝑞 = ( 1st ‘ 𝑐 ) → ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ 𝑞 ) ) = ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ ( 1st ‘ 𝑐 ) ) ) ) |
| 63 |
62
|
mpteq2dv |
⊢ ( 𝑞 = ( 1st ‘ 𝑐 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ 𝑞 ) ) ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ ( 1st ‘ 𝑐 ) ) ) ) ) |
| 64 |
63
|
breq1d |
⊢ ( 𝑞 = ( 1st ‘ 𝑐 ) → ( ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ↔ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ ( 1st ‘ 𝑐 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 65 |
4
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 66 |
|
simpr |
⊢ ( ( 𝑑 = 𝑞 ∧ 𝑓 = 𝑔 ) → 𝑓 = 𝑔 ) |
| 67 |
|
coeq2 |
⊢ ( 𝑑 = 𝑞 → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑞 ) ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝑑 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑞 ) ) |
| 69 |
66 68
|
fveq12d |
⊢ ( ( 𝑑 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑔 ‘ ( 𝑥 ∘ 𝑞 ) ) ) |
| 70 |
69
|
mpteq2dv |
⊢ ( ( 𝑑 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑞 ) ) ) ) |
| 71 |
70
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑑 = 𝑞 ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑞 ) ) ) ) |
| 72 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑞 ∈ 𝑃 ) |
| 73 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑔 ∈ 𝑀 ) |
| 74 |
12
|
mptex |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑞 ) ) ) ∈ V |
| 75 |
74
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑞 ) ) ) ∈ V ) |
| 76 |
65 71 72 73 75
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑞 𝐴 𝑔 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑞 ) ) ) ) |
| 77 |
|
coeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∘ 𝑞 ) = ( 𝑦 ∘ 𝑞 ) ) |
| 78 |
77
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑔 ‘ ( 𝑥 ∘ 𝑞 ) ) = ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) |
| 79 |
78
|
cbvmptv |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ 𝑞 ) ) ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) |
| 80 |
76 79
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑞 𝐴 𝑔 ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) |
| 81 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → 𝐼 ∈ 𝑉 ) |
| 82 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 83 |
1 2 3 4 81 82 73 72
|
mplvrpmfgalem |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑞 𝐴 𝑔 ) finSupp ( 0g ‘ 𝑅 ) ) |
| 84 |
80 83
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 85 |
84
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝑀 ∧ 𝑞 ∈ 𝑃 ) ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 86 |
85
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝑀 ∀ 𝑞 ∈ 𝑃 ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ∀ 𝑔 ∈ 𝑀 ∀ 𝑞 ∈ 𝑃 ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 88 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 2nd ‘ 𝑐 ) ∈ 𝑀 ) |
| 89 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 1st ‘ 𝑐 ) ∈ 𝑃 ) |
| 90 |
60 64 87 88 89
|
rspc2dv |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑦 ∘ ( 1st ‘ 𝑐 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 91 |
57 90
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 92 |
14 50 51 82 3
|
mplelbas |
⊢ ( ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) ∈ 𝑀 ↔ ( ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 93 |
54 91 92
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) ∈ 𝑀 ) |
| 94 |
|
vex |
⊢ 𝑑 ∈ V |
| 95 |
|
vex |
⊢ 𝑓 ∈ V |
| 96 |
94 95
|
op2ndd |
⊢ ( 𝑐 = 〈 𝑑 , 𝑓 〉 → ( 2nd ‘ 𝑐 ) = 𝑓 ) |
| 97 |
94 95
|
op1std |
⊢ ( 𝑐 = 〈 𝑑 , 𝑓 〉 → ( 1st ‘ 𝑐 ) = 𝑑 ) |
| 98 |
97
|
coeq2d |
⊢ ( 𝑐 = 〈 𝑑 , 𝑓 〉 → ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) = ( 𝑥 ∘ 𝑑 ) ) |
| 99 |
96 98
|
fveq12d |
⊢ ( 𝑐 = 〈 𝑑 , 𝑓 〉 → ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) = ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) |
| 100 |
99
|
mpteq2dv |
⊢ ( 𝑐 = 〈 𝑑 , 𝑓 〉 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 101 |
100
|
mpompt |
⊢ ( 𝑐 ∈ ( 𝑃 × 𝑀 ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) ) = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 102 |
4 101
|
eqtr4i |
⊢ 𝐴 = ( 𝑐 ∈ ( 𝑃 × 𝑀 ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 2nd ‘ 𝑐 ) ‘ ( 𝑥 ∘ ( 1st ‘ 𝑐 ) ) ) ) ) |
| 103 |
93 102
|
fmptd |
⊢ ( 𝜑 → 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 ) |
| 104 |
1
|
symgid |
⊢ ( 𝐼 ∈ 𝑉 → ( I ↾ 𝐼 ) = ( 0g ‘ 𝑆 ) ) |
| 105 |
5 104
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝐼 ) = ( 0g ‘ 𝑆 ) ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → ( I ↾ 𝐼 ) = ( 0g ‘ 𝑆 ) ) |
| 107 |
106
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → ( ( I ↾ 𝐼 ) 𝐴 𝑔 ) = ( ( 0g ‘ 𝑆 ) 𝐴 𝑔 ) ) |
| 108 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 109 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 110 |
22
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 111 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 112 |
111
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 113 |
109 110 112
|
elmaprd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 114 |
|
fcoi1 |
⊢ ( 𝑥 : 𝐼 ⟶ ℕ0 → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 ) |
| 115 |
113 114
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 ) |
| 116 |
115
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) = ( 𝑔 ‘ 𝑥 ) ) |
| 117 |
116
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 118 |
117
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 119 |
|
simpr |
⊢ ( ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) → 𝑓 = 𝑔 ) |
| 120 |
|
coeq2 |
⊢ ( 𝑑 = ( I ↾ 𝐼 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) |
| 122 |
119 121
|
fveq12d |
⊢ ( ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) |
| 123 |
122
|
mpteq2dv |
⊢ ( ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) ) |
| 124 |
123
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) ) |
| 125 |
14 50 51 82 3
|
mplelbas |
⊢ ( 𝑔 ∈ 𝑀 ↔ ( 𝑔 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑔 finSupp ( 0g ‘ 𝑅 ) ) ) |
| 126 |
125
|
simplbi |
⊢ ( 𝑔 ∈ 𝑀 → 𝑔 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 127 |
50 15 17 51 126
|
psrelbas |
⊢ ( 𝑔 ∈ 𝑀 → 𝑔 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 128 |
127
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑑 = ( I ↾ 𝐼 ) ) ∧ 𝑓 = 𝑔 ) → 𝑔 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 129 |
128
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑑 = ( I ↾ 𝐼 ) ) ∧ 𝑓 = 𝑔 ) → 𝑔 = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 130 |
129
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) ) → 𝑔 = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 131 |
118 124 130
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = 𝑔 ) |
| 132 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 133 |
2 132
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ 𝑃 ) |
| 134 |
5 6 133
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝑃 ) |
| 135 |
105 134
|
eqeltrd |
⊢ ( 𝜑 → ( I ↾ 𝐼 ) ∈ 𝑃 ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → ( I ↾ 𝐼 ) ∈ 𝑃 ) |
| 137 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → 𝑔 ∈ 𝑀 ) |
| 138 |
108 131 136 137 137
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → ( ( I ↾ 𝐼 ) 𝐴 𝑔 ) = 𝑔 ) |
| 139 |
107 138
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → ( ( 0g ‘ 𝑆 ) 𝐴 𝑔 ) = 𝑔 ) |
| 140 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 141 |
1 2 140
|
symgov |
⊢ ( ( 𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑃 ) → ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) = ( 𝑝 ∘ 𝑞 ) ) |
| 142 |
141
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) = ( 𝑝 ∘ 𝑞 ) ) |
| 143 |
142
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( ( 𝑝 ∘ 𝑞 ) 𝐴 𝑔 ) ) |
| 144 |
|
coass |
⊢ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) = ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) |
| 145 |
144
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) = ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) |
| 146 |
145
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) = ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) ) |
| 147 |
146
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) ) ) |
| 148 |
80
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑞 𝐴 𝑔 ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) |
| 149 |
148
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) = ( 𝑝 𝐴 ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ) |
| 150 |
4
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 151 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑑 = 𝑝 ) |
| 152 |
151
|
coeq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑝 ) ) |
| 153 |
152
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑓 ‘ ( 𝑥 ∘ 𝑝 ) ) ) |
| 154 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) |
| 155 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 = ( 𝑥 ∘ 𝑝 ) ) → 𝑦 = ( 𝑥 ∘ 𝑝 ) ) |
| 156 |
155
|
coeq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 = ( 𝑥 ∘ 𝑝 ) ) → ( 𝑦 ∘ 𝑞 ) = ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) |
| 157 |
156
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ 𝑦 = ( 𝑥 ∘ 𝑝 ) ) → ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) = ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) |
| 158 |
|
breq1 |
⊢ ( ℎ = ( 𝑥 ∘ 𝑝 ) → ( ℎ finSupp 0 ↔ ( 𝑥 ∘ 𝑝 ) finSupp 0 ) ) |
| 159 |
22
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 160 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → 𝐼 ∈ 𝑉 ) |
| 161 |
160
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 162 |
25
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 163 |
162
|
sselda |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 164 |
161 159 163
|
elmaprd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 165 |
1 2
|
symgbasf |
⊢ ( 𝑝 ∈ 𝑃 → 𝑝 : 𝐼 ⟶ 𝐼 ) |
| 166 |
165
|
ad5antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑝 : 𝐼 ⟶ 𝐼 ) |
| 167 |
164 166
|
fcod |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑝 ) : 𝐼 ⟶ ℕ0 ) |
| 168 |
159 161 167
|
elmapdd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑝 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 169 |
37
|
simprbi |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝑥 finSupp 0 ) |
| 170 |
169
|
adantl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 finSupp 0 ) |
| 171 |
1 2
|
symgbasf1o |
⊢ ( 𝑝 ∈ 𝑃 → 𝑝 : 𝐼 –1-1-onto→ 𝐼 ) |
| 172 |
|
f1of1 |
⊢ ( 𝑝 : 𝐼 –1-1-onto→ 𝐼 → 𝑝 : 𝐼 –1-1→ 𝐼 ) |
| 173 |
171 172
|
syl |
⊢ ( 𝑝 ∈ 𝑃 → 𝑝 : 𝐼 –1-1→ 𝐼 ) |
| 174 |
173
|
ad5antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑝 : 𝐼 –1-1→ 𝐼 ) |
| 175 |
43
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 0 ∈ ℕ0 ) |
| 176 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 177 |
170 174 175 176
|
fsuppco |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑝 ) finSupp 0 ) |
| 178 |
158 168 177
|
elrabd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑝 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 179 |
|
fvexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ∈ V ) |
| 180 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) |
| 181 |
|
nfmpt1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) |
| 182 |
181
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) |
| 183 |
180 182
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) |
| 184 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 185 |
183 184
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 186 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑥 ∘ 𝑝 ) |
| 187 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) |
| 188 |
154 157 178 179 185 186 187
|
fvmptdf |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑝 ) ) = ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) |
| 189 |
153 188
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) |
| 190 |
189
|
mpteq2dva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) ) |
| 191 |
190
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑑 = 𝑝 ∧ 𝑓 = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) ) |
| 192 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑝 ∈ 𝑃 ) |
| 193 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( Base ‘ 𝑅 ) ∈ V ) |
| 194 |
12
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 195 |
137
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑔 ∈ 𝑀 ) |
| 196 |
14 15 3 17 195
|
mplelf |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑔 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 197 |
|
breq1 |
⊢ ( ℎ = ( 𝑦 ∘ 𝑞 ) → ( ℎ finSupp 0 ↔ ( 𝑦 ∘ 𝑞 ) finSupp 0 ) ) |
| 198 |
22
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 199 |
160
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 200 |
25
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 201 |
200
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑦 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 202 |
199 198 201
|
elmaprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 203 |
1 2
|
symgbasf |
⊢ ( 𝑞 ∈ 𝑃 → 𝑞 : 𝐼 ⟶ 𝐼 ) |
| 204 |
203
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑞 : 𝐼 ⟶ 𝐼 ) |
| 205 |
202 204
|
fcod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑦 ∘ 𝑞 ) : 𝐼 ⟶ ℕ0 ) |
| 206 |
198 199 205
|
elmapdd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑦 ∘ 𝑞 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 207 |
|
breq1 |
⊢ ( ℎ = 𝑦 → ( ℎ finSupp 0 ↔ 𝑦 finSupp 0 ) ) |
| 208 |
207
|
elrab |
⊢ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↔ ( 𝑦 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 𝑦 finSupp 0 ) ) |
| 209 |
208
|
simprbi |
⊢ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → 𝑦 finSupp 0 ) |
| 210 |
209
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑦 finSupp 0 ) |
| 211 |
1 2
|
symgbasf1o |
⊢ ( 𝑞 ∈ 𝑃 → 𝑞 : 𝐼 –1-1-onto→ 𝐼 ) |
| 212 |
211
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑞 : 𝐼 –1-1-onto→ 𝐼 ) |
| 213 |
|
f1of1 |
⊢ ( 𝑞 : 𝐼 –1-1-onto→ 𝐼 → 𝑞 : 𝐼 –1-1→ 𝐼 ) |
| 214 |
212 213
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑞 : 𝐼 –1-1→ 𝐼 ) |
| 215 |
43
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 0 ∈ ℕ0 ) |
| 216 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 217 |
210 214 215 216
|
fsuppco |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑦 ∘ 𝑞 ) finSupp 0 ) |
| 218 |
197 206 217
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑦 ∘ 𝑞 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 219 |
196 218
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 220 |
219
|
fmpttd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 221 |
193 194 220
|
elmapdd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
| 222 |
52
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) |
| 223 |
221 222
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 224 |
84
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 225 |
14 50 51 82 3
|
mplelbas |
⊢ ( ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ∈ 𝑀 ↔ ( ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 226 |
223 224 225
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ∈ 𝑀 ) |
| 227 |
194
|
mptexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) ∈ V ) |
| 228 |
150 191 192 226 227
|
ovmpod |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑝 𝐴 ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦 ∘ 𝑞 ) ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) ) |
| 229 |
149 228
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥 ∘ 𝑝 ) ∘ 𝑞 ) ) ) ) |
| 230 |
|
simpr |
⊢ ( ( 𝑑 = ( 𝑝 ∘ 𝑞 ) ∧ 𝑓 = 𝑔 ) → 𝑓 = 𝑔 ) |
| 231 |
|
coeq2 |
⊢ ( 𝑑 = ( 𝑝 ∘ 𝑞 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) |
| 232 |
231
|
adantr |
⊢ ( ( 𝑑 = ( 𝑝 ∘ 𝑞 ) ∧ 𝑓 = 𝑔 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) |
| 233 |
230 232
|
fveq12d |
⊢ ( ( 𝑑 = ( 𝑝 ∘ 𝑞 ) ∧ 𝑓 = 𝑔 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) ) |
| 234 |
233
|
mpteq2dv |
⊢ ( ( 𝑑 = ( 𝑝 ∘ 𝑞 ) ∧ 𝑓 = 𝑔 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) ) ) |
| 235 |
234
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝑑 = ( 𝑝 ∘ 𝑞 ) ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) ) ) |
| 236 |
160 6
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑆 ∈ Grp ) |
| 237 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑞 ∈ 𝑃 ) |
| 238 |
2 140 236 192 237
|
grpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) ∈ 𝑃 ) |
| 239 |
142 238
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑝 ∘ 𝑞 ) ∈ 𝑃 ) |
| 240 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → 𝑔 ∈ 𝑀 ) |
| 241 |
194
|
mptexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) ) ∈ V ) |
| 242 |
150 235 239 240 241
|
ovmpod |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( ( 𝑝 ∘ 𝑞 ) 𝐴 𝑔 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝 ∘ 𝑞 ) ) ) ) ) |
| 243 |
147 229 242
|
3eqtr4rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( ( 𝑝 ∘ 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) |
| 244 |
143 243
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑞 ∈ 𝑃 ) → ( ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) |
| 245 |
244
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) ∧ ( 𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑃 ) ) → ( ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) |
| 246 |
245
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → ∀ 𝑝 ∈ 𝑃 ∀ 𝑞 ∈ 𝑃 ( ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) |
| 247 |
139 246
|
jca |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑀 ) → ( ( ( 0g ‘ 𝑆 ) 𝐴 𝑔 ) = 𝑔 ∧ ∀ 𝑝 ∈ 𝑃 ∀ 𝑞 ∈ 𝑃 ( ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) ) |
| 248 |
247
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝑀 ( ( ( 0g ‘ 𝑆 ) 𝐴 𝑔 ) = 𝑔 ∧ ∀ 𝑝 ∈ 𝑃 ∀ 𝑞 ∈ 𝑃 ( ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) ) |
| 249 |
2 140 132
|
isga |
⊢ ( 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑀 ∈ V ) ∧ ( 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑔 ∈ 𝑀 ( ( ( 0g ‘ 𝑆 ) 𝐴 𝑔 ) = 𝑔 ∧ ∀ 𝑝 ∈ 𝑃 ∀ 𝑞 ∈ 𝑃 ( ( 𝑝 ( +g ‘ 𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) ) ) ) |
| 250 |
7 9 103 248 249
|
syl22anbrc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) ) |