Metamath Proof Explorer


Theorem mplvrpmga

Description: The action of permuting variables in a multivariate polynomial is a group action. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses mplvrpmga.1 𝑆 = ( SymGrp ‘ 𝐼 )
mplvrpmga.2 𝑃 = ( Base ‘ 𝑆 )
mplvrpmga.3 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
mplvrpmga.4 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
mplvrpmga.5 ( 𝜑𝐼𝑉 )
Assertion mplvrpmga ( 𝜑𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) )

Proof

Step Hyp Ref Expression
1 mplvrpmga.1 𝑆 = ( SymGrp ‘ 𝐼 )
2 mplvrpmga.2 𝑃 = ( Base ‘ 𝑆 )
3 mplvrpmga.3 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
4 mplvrpmga.4 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
5 mplvrpmga.5 ( 𝜑𝐼𝑉 )
6 1 symggrp ( 𝐼𝑉𝑆 ∈ Grp )
7 5 6 syl ( 𝜑𝑆 ∈ Grp )
8 3 fvexi 𝑀 ∈ V
9 8 a1i ( 𝜑𝑀 ∈ V )
10 fvexd ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( Base ‘ 𝑅 ) ∈ V )
11 ovex ( ℕ0m 𝐼 ) ∈ V
12 11 rabex { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V
13 12 a1i ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V )
14 eqid ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 )
15 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
16 eqid { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
17 16 psrbasfsupp { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
18 xp2nd ( 𝑐 ∈ ( 𝑃 × 𝑀 ) → ( 2nd𝑐 ) ∈ 𝑀 )
19 18 ad2antlr ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 2nd𝑐 ) ∈ 𝑀 )
20 14 15 3 17 19 mplelf ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 2nd𝑐 ) : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
21 breq1 ( = ( 𝑥 ∘ ( 1st𝑐 ) ) → ( finSupp 0 ↔ ( 𝑥 ∘ ( 1st𝑐 ) ) finSupp 0 ) )
22 nn0ex 0 ∈ V
23 22 a1i ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ℕ0 ∈ V )
24 5 ad2antrr ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐼𝑉 )
25 ssrab2 { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⊆ ( ℕ0m 𝐼 )
26 25 a1i ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⊆ ( ℕ0m 𝐼 ) )
27 26 sselda ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ ( ℕ0m 𝐼 ) )
28 24 23 27 elmaprd ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
29 xp1st ( 𝑐 ∈ ( 𝑃 × 𝑀 ) → ( 1st𝑐 ) ∈ 𝑃 )
30 29 ad2antlr ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 1st𝑐 ) ∈ 𝑃 )
31 1 2 symgbasf ( ( 1st𝑐 ) ∈ 𝑃 → ( 1st𝑐 ) : 𝐼𝐼 )
32 30 31 syl ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 1st𝑐 ) : 𝐼𝐼 )
33 28 32 fcod ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥 ∘ ( 1st𝑐 ) ) : 𝐼 ⟶ ℕ0 )
34 23 24 33 elmapdd ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥 ∘ ( 1st𝑐 ) ) ∈ ( ℕ0m 𝐼 ) )
35 simpr ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
36 breq1 ( = 𝑥 → ( finSupp 0 ↔ 𝑥 finSupp 0 ) )
37 36 elrab ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↔ ( 𝑥 ∈ ( ℕ0m 𝐼 ) ∧ 𝑥 finSupp 0 ) )
38 35 37 sylib ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥 ∈ ( ℕ0m 𝐼 ) ∧ 𝑥 finSupp 0 ) )
39 38 simprd ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 finSupp 0 )
40 1 2 symgbasf1o ( ( 1st𝑐 ) ∈ 𝑃 → ( 1st𝑐 ) : 𝐼1-1-onto𝐼 )
41 f1of1 ( ( 1st𝑐 ) : 𝐼1-1-onto𝐼 → ( 1st𝑐 ) : 𝐼1-1𝐼 )
42 30 40 41 3syl ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 1st𝑐 ) : 𝐼1-1𝐼 )
43 0nn0 0 ∈ ℕ0
44 43 a1i ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 0 ∈ ℕ0 )
45 39 42 44 35 fsuppco ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥 ∘ ( 1st𝑐 ) ) finSupp 0 )
46 21 34 45 elrabd ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥 ∘ ( 1st𝑐 ) ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
47 20 46 ffvelcdmd ( ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ∈ ( Base ‘ 𝑅 ) )
48 47 fmpttd ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
49 10 13 48 elmapdd ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) )
50 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
51 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
52 50 15 17 51 5 psrbas ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) )
53 52 adantr ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) )
54 49 53 eleqtrrd ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
55 coeq1 ( 𝑥 = 𝑦 → ( 𝑥 ∘ ( 1st𝑐 ) ) = ( 𝑦 ∘ ( 1st𝑐 ) ) )
56 55 fveq2d ( 𝑥 = 𝑦 → ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) = ( ( 2nd𝑐 ) ‘ ( 𝑦 ∘ ( 1st𝑐 ) ) ) )
57 56 cbvmptv ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑦 ∘ ( 1st𝑐 ) ) ) )
58 fveq1 ( 𝑔 = ( 2nd𝑐 ) → ( 𝑔 ‘ ( 𝑦𝑞 ) ) = ( ( 2nd𝑐 ) ‘ ( 𝑦𝑞 ) ) )
59 58 mpteq2dv ( 𝑔 = ( 2nd𝑐 ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑦𝑞 ) ) ) )
60 59 breq1d ( 𝑔 = ( 2nd𝑐 ) → ( ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) ↔ ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) ) )
61 coeq2 ( 𝑞 = ( 1st𝑐 ) → ( 𝑦𝑞 ) = ( 𝑦 ∘ ( 1st𝑐 ) ) )
62 61 fveq2d ( 𝑞 = ( 1st𝑐 ) → ( ( 2nd𝑐 ) ‘ ( 𝑦𝑞 ) ) = ( ( 2nd𝑐 ) ‘ ( 𝑦 ∘ ( 1st𝑐 ) ) ) )
63 62 mpteq2dv ( 𝑞 = ( 1st𝑐 ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑦𝑞 ) ) ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑦 ∘ ( 1st𝑐 ) ) ) ) )
64 63 breq1d ( 𝑞 = ( 1st𝑐 ) → ( ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) ↔ ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑦 ∘ ( 1st𝑐 ) ) ) ) finSupp ( 0g𝑅 ) ) )
65 4 a1i ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
66 simpr ( ( 𝑑 = 𝑞𝑓 = 𝑔 ) → 𝑓 = 𝑔 )
67 coeq2 ( 𝑑 = 𝑞 → ( 𝑥𝑑 ) = ( 𝑥𝑞 ) )
68 67 adantr ( ( 𝑑 = 𝑞𝑓 = 𝑔 ) → ( 𝑥𝑑 ) = ( 𝑥𝑞 ) )
69 66 68 fveq12d ( ( 𝑑 = 𝑞𝑓 = 𝑔 ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑔 ‘ ( 𝑥𝑞 ) ) )
70 69 mpteq2dv ( ( 𝑑 = 𝑞𝑓 = 𝑔 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥𝑞 ) ) ) )
71 70 adantl ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) ∧ ( 𝑑 = 𝑞𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥𝑞 ) ) ) )
72 simpr ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → 𝑞𝑃 )
73 simplr ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → 𝑔𝑀 )
74 12 mptex ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥𝑞 ) ) ) ∈ V
75 74 a1i ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥𝑞 ) ) ) ∈ V )
76 65 71 72 73 75 ovmpod ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → ( 𝑞 𝐴 𝑔 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥𝑞 ) ) ) )
77 coeq1 ( 𝑥 = 𝑦 → ( 𝑥𝑞 ) = ( 𝑦𝑞 ) )
78 77 fveq2d ( 𝑥 = 𝑦 → ( 𝑔 ‘ ( 𝑥𝑞 ) ) = ( 𝑔 ‘ ( 𝑦𝑞 ) ) )
79 78 cbvmptv ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥𝑞 ) ) ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) )
80 76 79 eqtrdi ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → ( 𝑞 𝐴 𝑔 ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) )
81 5 ad2antrr ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → 𝐼𝑉 )
82 eqid ( 0g𝑅 ) = ( 0g𝑅 )
83 1 2 3 4 81 82 73 72 mplvrpmfgalem ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → ( 𝑞 𝐴 𝑔 ) finSupp ( 0g𝑅 ) )
84 80 83 eqbrtrrd ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑞𝑃 ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) )
85 84 anasss ( ( 𝜑 ∧ ( 𝑔𝑀𝑞𝑃 ) ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) )
86 85 ralrimivva ( 𝜑 → ∀ 𝑔𝑀𝑞𝑃 ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) )
87 86 adantr ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ∀ 𝑔𝑀𝑞𝑃 ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) )
88 18 adantl ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 2nd𝑐 ) ∈ 𝑀 )
89 29 adantl ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 1st𝑐 ) ∈ 𝑃 )
90 60 64 87 88 89 rspc2dv ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑦 ∘ ( 1st𝑐 ) ) ) ) finSupp ( 0g𝑅 ) )
91 57 90 eqbrtrid ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) finSupp ( 0g𝑅 ) )
92 14 50 51 82 3 mplelbas ( ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) ∈ 𝑀 ↔ ( ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) finSupp ( 0g𝑅 ) ) )
93 54 91 92 sylanbrc ( ( 𝜑𝑐 ∈ ( 𝑃 × 𝑀 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) ∈ 𝑀 )
94 vex 𝑑 ∈ V
95 vex 𝑓 ∈ V
96 94 95 op2ndd ( 𝑐 = ⟨ 𝑑 , 𝑓 ⟩ → ( 2nd𝑐 ) = 𝑓 )
97 94 95 op1std ( 𝑐 = ⟨ 𝑑 , 𝑓 ⟩ → ( 1st𝑐 ) = 𝑑 )
98 97 coeq2d ( 𝑐 = ⟨ 𝑑 , 𝑓 ⟩ → ( 𝑥 ∘ ( 1st𝑐 ) ) = ( 𝑥𝑑 ) )
99 96 98 fveq12d ( 𝑐 = ⟨ 𝑑 , 𝑓 ⟩ → ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) = ( 𝑓 ‘ ( 𝑥𝑑 ) ) )
100 99 mpteq2dv ( 𝑐 = ⟨ 𝑑 , 𝑓 ⟩ → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
101 100 mpompt ( 𝑐 ∈ ( 𝑃 × 𝑀 ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) ) = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
102 4 101 eqtr4i 𝐴 = ( 𝑐 ∈ ( 𝑃 × 𝑀 ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 2nd𝑐 ) ‘ ( 𝑥 ∘ ( 1st𝑐 ) ) ) ) )
103 93 102 fmptd ( 𝜑𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 )
104 1 symgid ( 𝐼𝑉 → ( I ↾ 𝐼 ) = ( 0g𝑆 ) )
105 5 104 syl ( 𝜑 → ( I ↾ 𝐼 ) = ( 0g𝑆 ) )
106 105 adantr ( ( 𝜑𝑔𝑀 ) → ( I ↾ 𝐼 ) = ( 0g𝑆 ) )
107 106 oveq1d ( ( 𝜑𝑔𝑀 ) → ( ( I ↾ 𝐼 ) 𝐴 𝑔 ) = ( ( 0g𝑆 ) 𝐴 𝑔 ) )
108 4 a1i ( ( 𝜑𝑔𝑀 ) → 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
109 5 ad2antrr ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐼𝑉 )
110 22 a1i ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ℕ0 ∈ V )
111 25 a1i ( ( 𝜑𝑔𝑀 ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⊆ ( ℕ0m 𝐼 ) )
112 111 sselda ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ ( ℕ0m 𝐼 ) )
113 109 110 112 elmaprd ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
114 fcoi1 ( 𝑥 : 𝐼 ⟶ ℕ0 → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 )
115 113 114 syl ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥 ∘ ( I ↾ 𝐼 ) ) = 𝑥 )
116 115 fveq2d ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) = ( 𝑔𝑥 ) )
117 116 mpteq2dva ( ( 𝜑𝑔𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔𝑥 ) ) )
118 117 adantr ( ( ( 𝜑𝑔𝑀 ) ∧ ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔𝑥 ) ) )
119 simpr ( ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) → 𝑓 = 𝑔 )
120 coeq2 ( 𝑑 = ( I ↾ 𝐼 ) → ( 𝑥𝑑 ) = ( 𝑥 ∘ ( I ↾ 𝐼 ) ) )
121 120 adantr ( ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) → ( 𝑥𝑑 ) = ( 𝑥 ∘ ( I ↾ 𝐼 ) ) )
122 119 121 fveq12d ( ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) )
123 122 mpteq2dv ( ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) )
124 123 adantl ( ( ( 𝜑𝑔𝑀 ) ∧ ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( I ↾ 𝐼 ) ) ) ) )
125 14 50 51 82 3 mplelbas ( 𝑔𝑀 ↔ ( 𝑔 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑔 finSupp ( 0g𝑅 ) ) )
126 125 simplbi ( 𝑔𝑀𝑔 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
127 50 15 17 51 126 psrelbas ( 𝑔𝑀𝑔 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
128 127 ad3antlr ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑑 = ( I ↾ 𝐼 ) ) ∧ 𝑓 = 𝑔 ) → 𝑔 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
129 128 feqmptd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑑 = ( I ↾ 𝐼 ) ) ∧ 𝑓 = 𝑔 ) → 𝑔 = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔𝑥 ) ) )
130 129 anasss ( ( ( 𝜑𝑔𝑀 ) ∧ ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) ) → 𝑔 = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔𝑥 ) ) )
131 118 124 130 3eqtr4d ( ( ( 𝜑𝑔𝑀 ) ∧ ( 𝑑 = ( I ↾ 𝐼 ) ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = 𝑔 )
132 eqid ( 0g𝑆 ) = ( 0g𝑆 )
133 2 132 grpidcl ( 𝑆 ∈ Grp → ( 0g𝑆 ) ∈ 𝑃 )
134 5 6 133 3syl ( 𝜑 → ( 0g𝑆 ) ∈ 𝑃 )
135 105 134 eqeltrd ( 𝜑 → ( I ↾ 𝐼 ) ∈ 𝑃 )
136 135 adantr ( ( 𝜑𝑔𝑀 ) → ( I ↾ 𝐼 ) ∈ 𝑃 )
137 simpr ( ( 𝜑𝑔𝑀 ) → 𝑔𝑀 )
138 108 131 136 137 137 ovmpod ( ( 𝜑𝑔𝑀 ) → ( ( I ↾ 𝐼 ) 𝐴 𝑔 ) = 𝑔 )
139 107 138 eqtr3d ( ( 𝜑𝑔𝑀 ) → ( ( 0g𝑆 ) 𝐴 𝑔 ) = 𝑔 )
140 eqid ( +g𝑆 ) = ( +g𝑆 )
141 1 2 140 symgov ( ( 𝑝𝑃𝑞𝑃 ) → ( 𝑝 ( +g𝑆 ) 𝑞 ) = ( 𝑝𝑞 ) )
142 141 adantll ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑝 ( +g𝑆 ) 𝑞 ) = ( 𝑝𝑞 ) )
143 142 oveq1d ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( ( 𝑝 ( +g𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( ( 𝑝𝑞 ) 𝐴 𝑔 ) )
144 coass ( ( 𝑥𝑝 ) ∘ 𝑞 ) = ( 𝑥 ∘ ( 𝑝𝑞 ) )
145 144 a1i ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 𝑥𝑝 ) ∘ 𝑞 ) = ( 𝑥 ∘ ( 𝑝𝑞 ) ) )
146 145 fveq2d ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) = ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝𝑞 ) ) ) )
147 146 mpteq2dva ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝𝑞 ) ) ) ) )
148 80 adantlr ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑞 𝐴 𝑔 ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) )
149 148 oveq2d ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) = ( 𝑝 𝐴 ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) )
150 4 a1i ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
151 simpllr ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑑 = 𝑝 )
152 151 coeq2d ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝑑 ) = ( 𝑥𝑝 ) )
153 152 fveq2d ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑓 ‘ ( 𝑥𝑝 ) ) )
154 simplr ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) )
155 simpr ( ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 = ( 𝑥𝑝 ) ) → 𝑦 = ( 𝑥𝑝 ) )
156 155 coeq1d ( ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 = ( 𝑥𝑝 ) ) → ( 𝑦𝑞 ) = ( ( 𝑥𝑝 ) ∘ 𝑞 ) )
157 156 fveq2d ( ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ 𝑦 = ( 𝑥𝑝 ) ) → ( 𝑔 ‘ ( 𝑦𝑞 ) ) = ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) )
158 breq1 ( = ( 𝑥𝑝 ) → ( finSupp 0 ↔ ( 𝑥𝑝 ) finSupp 0 ) )
159 22 a1i ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ℕ0 ∈ V )
160 5 ad3antrrr ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → 𝐼𝑉 )
161 160 ad3antrrr ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐼𝑉 )
162 25 a1i ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⊆ ( ℕ0m 𝐼 ) )
163 162 sselda ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ ( ℕ0m 𝐼 ) )
164 161 159 163 elmaprd ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
165 1 2 symgbasf ( 𝑝𝑃𝑝 : 𝐼𝐼 )
166 165 ad5antlr ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑝 : 𝐼𝐼 )
167 164 166 fcod ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝑝 ) : 𝐼 ⟶ ℕ0 )
168 159 161 167 elmapdd ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝑝 ) ∈ ( ℕ0m 𝐼 ) )
169 37 simprbi ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } → 𝑥 finSupp 0 )
170 169 adantl ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 finSupp 0 )
171 1 2 symgbasf1o ( 𝑝𝑃𝑝 : 𝐼1-1-onto𝐼 )
172 f1of1 ( 𝑝 : 𝐼1-1-onto𝐼𝑝 : 𝐼1-1𝐼 )
173 171 172 syl ( 𝑝𝑃𝑝 : 𝐼1-1𝐼 )
174 173 ad5antlr ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑝 : 𝐼1-1𝐼 )
175 43 a1i ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 0 ∈ ℕ0 )
176 simpr ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
177 170 174 175 176 fsuppco ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝑝 ) finSupp 0 )
178 158 168 177 elrabd ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝑝 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
179 fvexd ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) ∈ V )
180 nfv 𝑦 ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 )
181 nfmpt1 𝑦 ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) )
182 181 nfeq2 𝑦 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) )
183 180 182 nfan 𝑦 ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) )
184 nfv 𝑦 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
185 183 184 nfan 𝑦 ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
186 nfcv 𝑦 ( 𝑥𝑝 )
187 nfcv 𝑦 ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) )
188 154 157 178 179 185 186 187 fvmptdf ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥𝑝 ) ) = ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) )
189 153 188 eqtrd ( ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) )
190 189 mpteq2dva ( ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑑 = 𝑝 ) ∧ 𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) ) )
191 190 anasss ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ ( 𝑑 = 𝑝𝑓 = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) ) )
192 simplr ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → 𝑝𝑃 )
193 fvexd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( Base ‘ 𝑅 ) ∈ V )
194 12 a1i ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V )
195 137 ad3antrrr ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑔𝑀 )
196 14 15 3 17 195 mplelf ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑔 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
197 breq1 ( = ( 𝑦𝑞 ) → ( finSupp 0 ↔ ( 𝑦𝑞 ) finSupp 0 ) )
198 22 a1i ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ℕ0 ∈ V )
199 160 adantr ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐼𝑉 )
200 25 a1i ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⊆ ( ℕ0m 𝐼 ) )
201 200 sselda ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑦 ∈ ( ℕ0m 𝐼 ) )
202 199 198 201 elmaprd ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑦 : 𝐼 ⟶ ℕ0 )
203 1 2 symgbasf ( 𝑞𝑃𝑞 : 𝐼𝐼 )
204 203 ad2antlr ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑞 : 𝐼𝐼 )
205 202 204 fcod ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑦𝑞 ) : 𝐼 ⟶ ℕ0 )
206 198 199 205 elmapdd ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑦𝑞 ) ∈ ( ℕ0m 𝐼 ) )
207 breq1 ( = 𝑦 → ( finSupp 0 ↔ 𝑦 finSupp 0 ) )
208 207 elrab ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↔ ( 𝑦 ∈ ( ℕ0m 𝐼 ) ∧ 𝑦 finSupp 0 ) )
209 208 simprbi ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } → 𝑦 finSupp 0 )
210 209 adantl ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑦 finSupp 0 )
211 1 2 symgbasf1o ( 𝑞𝑃𝑞 : 𝐼1-1-onto𝐼 )
212 211 ad2antlr ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑞 : 𝐼1-1-onto𝐼 )
213 f1of1 ( 𝑞 : 𝐼1-1-onto𝐼𝑞 : 𝐼1-1𝐼 )
214 212 213 syl ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑞 : 𝐼1-1𝐼 )
215 43 a1i ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 0 ∈ ℕ0 )
216 simpr ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
217 210 214 215 216 fsuppco ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑦𝑞 ) finSupp 0 )
218 197 206 217 elrabd ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑦𝑞 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
219 196 218 ffvelcdmd ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑔 ‘ ( 𝑦𝑞 ) ) ∈ ( Base ‘ 𝑅 ) )
220 219 fmpttd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
221 193 194 220 elmapdd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) )
222 52 ad3antrrr ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) )
223 221 222 eleqtrrd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
224 84 adantlr ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) )
225 14 50 51 82 3 mplelbas ( ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ∈ 𝑀 ↔ ( ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) finSupp ( 0g𝑅 ) ) )
226 223 224 225 sylanbrc ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ∈ 𝑀 )
227 194 mptexd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) ) ∈ V )
228 150 191 192 226 227 ovmpod ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑝 𝐴 ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑦𝑞 ) ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) ) )
229 149 228 eqtrd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( ( 𝑥𝑝 ) ∘ 𝑞 ) ) ) )
230 simpr ( ( 𝑑 = ( 𝑝𝑞 ) ∧ 𝑓 = 𝑔 ) → 𝑓 = 𝑔 )
231 coeq2 ( 𝑑 = ( 𝑝𝑞 ) → ( 𝑥𝑑 ) = ( 𝑥 ∘ ( 𝑝𝑞 ) ) )
232 231 adantr ( ( 𝑑 = ( 𝑝𝑞 ) ∧ 𝑓 = 𝑔 ) → ( 𝑥𝑑 ) = ( 𝑥 ∘ ( 𝑝𝑞 ) ) )
233 230 232 fveq12d ( ( 𝑑 = ( 𝑝𝑞 ) ∧ 𝑓 = 𝑔 ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝𝑞 ) ) ) )
234 233 mpteq2dv ( ( 𝑑 = ( 𝑝𝑞 ) ∧ 𝑓 = 𝑔 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝𝑞 ) ) ) ) )
235 234 adantl ( ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) ∧ ( 𝑑 = ( 𝑝𝑞 ) ∧ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝𝑞 ) ) ) ) )
236 160 6 syl ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → 𝑆 ∈ Grp )
237 simpr ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → 𝑞𝑃 )
238 2 140 236 192 237 grpcld ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑝 ( +g𝑆 ) 𝑞 ) ∈ 𝑃 )
239 142 238 eqeltrrd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑝𝑞 ) ∈ 𝑃 )
240 simpllr ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → 𝑔𝑀 )
241 194 mptexd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝𝑞 ) ) ) ) ∈ V )
242 150 235 239 240 241 ovmpod ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( ( 𝑝𝑞 ) 𝐴 𝑔 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑔 ‘ ( 𝑥 ∘ ( 𝑝𝑞 ) ) ) ) )
243 147 229 242 3eqtr4rd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( ( 𝑝𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) )
244 143 243 eqtrd ( ( ( ( 𝜑𝑔𝑀 ) ∧ 𝑝𝑃 ) ∧ 𝑞𝑃 ) → ( ( 𝑝 ( +g𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) )
245 244 anasss ( ( ( 𝜑𝑔𝑀 ) ∧ ( 𝑝𝑃𝑞𝑃 ) ) → ( ( 𝑝 ( +g𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) )
246 245 ralrimivva ( ( 𝜑𝑔𝑀 ) → ∀ 𝑝𝑃𝑞𝑃 ( ( 𝑝 ( +g𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) )
247 139 246 jca ( ( 𝜑𝑔𝑀 ) → ( ( ( 0g𝑆 ) 𝐴 𝑔 ) = 𝑔 ∧ ∀ 𝑝𝑃𝑞𝑃 ( ( 𝑝 ( +g𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) )
248 247 ralrimiva ( 𝜑 → ∀ 𝑔𝑀 ( ( ( 0g𝑆 ) 𝐴 𝑔 ) = 𝑔 ∧ ∀ 𝑝𝑃𝑞𝑃 ( ( 𝑝 ( +g𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) )
249 2 140 132 isga ( 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑀 ∈ V ) ∧ ( 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 ∧ ∀ 𝑔𝑀 ( ( ( 0g𝑆 ) 𝐴 𝑔 ) = 𝑔 ∧ ∀ 𝑝𝑃𝑞𝑃 ( ( 𝑝 ( +g𝑆 ) 𝑞 ) 𝐴 𝑔 ) = ( 𝑝 𝐴 ( 𝑞 𝐴 𝑔 ) ) ) ) ) )
250 7 9 103 248 249 syl22anbrc ( 𝜑𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) )