| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrbasfsupp.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } |
| 2 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 3 |
|
isfsupp |
⊢ ( ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 0 ∈ ℕ0 ) → ( 𝑓 finSupp 0 ↔ ( Fun 𝑓 ∧ ( 𝑓 supp 0 ) ∈ Fin ) ) ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( 𝑓 finSupp 0 ↔ ( Fun 𝑓 ∧ ( 𝑓 supp 0 ) ∈ Fin ) ) ) |
| 5 |
|
elmapfun |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → Fun 𝑓 ) |
| 6 |
5
|
biantrurd |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( ( 𝑓 supp 0 ) ∈ Fin ↔ ( Fun 𝑓 ∧ ( 𝑓 supp 0 ) ∈ Fin ) ) ) |
| 7 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
| 8 |
7
|
ineq2i |
⊢ ( ran 𝑓 ∩ ℕ ) = ( ran 𝑓 ∩ ( ℕ0 ∖ { 0 } ) ) |
| 9 |
|
incom |
⊢ ( ran 𝑓 ∩ ℕ ) = ( ℕ ∩ ran 𝑓 ) |
| 10 |
|
indif2 |
⊢ ( ran 𝑓 ∩ ( ℕ0 ∖ { 0 } ) ) = ( ( ran 𝑓 ∩ ℕ0 ) ∖ { 0 } ) |
| 11 |
8 9 10
|
3eqtr3i |
⊢ ( ℕ ∩ ran 𝑓 ) = ( ( ran 𝑓 ∩ ℕ0 ) ∖ { 0 } ) |
| 12 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → 𝑓 : 𝐼 ⟶ ℕ0 ) |
| 13 |
12
|
frnd |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ran 𝑓 ⊆ ℕ0 ) |
| 14 |
|
dfss2 |
⊢ ( ran 𝑓 ⊆ ℕ0 ↔ ( ran 𝑓 ∩ ℕ0 ) = ran 𝑓 ) |
| 15 |
13 14
|
sylib |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( ran 𝑓 ∩ ℕ0 ) = ran 𝑓 ) |
| 16 |
15
|
difeq1d |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( ( ran 𝑓 ∩ ℕ0 ) ∖ { 0 } ) = ( ran 𝑓 ∖ { 0 } ) ) |
| 17 |
11 16
|
eqtrid |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( ℕ ∩ ran 𝑓 ) = ( ran 𝑓 ∖ { 0 } ) ) |
| 18 |
17
|
imaeq2d |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( ◡ 𝑓 “ ( ℕ ∩ ran 𝑓 ) ) = ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) |
| 19 |
|
fimacnvinrn |
⊢ ( Fun 𝑓 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑓 “ ( ℕ ∩ ran 𝑓 ) ) ) |
| 20 |
5 19
|
syl |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑓 “ ( ℕ ∩ ran 𝑓 ) ) ) |
| 21 |
|
id |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 22 |
2
|
a1i |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → 0 ∈ ℕ0 ) |
| 23 |
|
supppreima |
⊢ ( ( Fun 𝑓 ∧ 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 0 ∈ ℕ0 ) → ( 𝑓 supp 0 ) = ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) |
| 24 |
5 21 22 23
|
syl3anc |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( 𝑓 supp 0 ) = ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) |
| 25 |
18 20 24
|
3eqtr4rd |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( 𝑓 supp 0 ) = ( ◡ 𝑓 “ ℕ ) ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( ( 𝑓 supp 0 ) ∈ Fin ↔ ( ◡ 𝑓 “ ℕ ) ∈ Fin ) ) |
| 27 |
4 6 26
|
3bitr2d |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) → ( 𝑓 finSupp 0 ↔ ( ◡ 𝑓 “ ℕ ) ∈ Fin ) ) |
| 28 |
27
|
rabbiia |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 29 |
1 28
|
eqtri |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |