| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrbasfsupp.d |
|- D = { f e. ( NN0 ^m I ) | f finSupp 0 } |
| 2 |
|
0nn0 |
|- 0 e. NN0 |
| 3 |
|
isfsupp |
|- ( ( f e. ( NN0 ^m I ) /\ 0 e. NN0 ) -> ( f finSupp 0 <-> ( Fun f /\ ( f supp 0 ) e. Fin ) ) ) |
| 4 |
2 3
|
mpan2 |
|- ( f e. ( NN0 ^m I ) -> ( f finSupp 0 <-> ( Fun f /\ ( f supp 0 ) e. Fin ) ) ) |
| 5 |
|
elmapfun |
|- ( f e. ( NN0 ^m I ) -> Fun f ) |
| 6 |
5
|
biantrurd |
|- ( f e. ( NN0 ^m I ) -> ( ( f supp 0 ) e. Fin <-> ( Fun f /\ ( f supp 0 ) e. Fin ) ) ) |
| 7 |
|
dfn2 |
|- NN = ( NN0 \ { 0 } ) |
| 8 |
7
|
ineq2i |
|- ( ran f i^i NN ) = ( ran f i^i ( NN0 \ { 0 } ) ) |
| 9 |
|
incom |
|- ( ran f i^i NN ) = ( NN i^i ran f ) |
| 10 |
|
indif2 |
|- ( ran f i^i ( NN0 \ { 0 } ) ) = ( ( ran f i^i NN0 ) \ { 0 } ) |
| 11 |
8 9 10
|
3eqtr3i |
|- ( NN i^i ran f ) = ( ( ran f i^i NN0 ) \ { 0 } ) |
| 12 |
|
elmapi |
|- ( f e. ( NN0 ^m I ) -> f : I --> NN0 ) |
| 13 |
12
|
frnd |
|- ( f e. ( NN0 ^m I ) -> ran f C_ NN0 ) |
| 14 |
|
dfss2 |
|- ( ran f C_ NN0 <-> ( ran f i^i NN0 ) = ran f ) |
| 15 |
13 14
|
sylib |
|- ( f e. ( NN0 ^m I ) -> ( ran f i^i NN0 ) = ran f ) |
| 16 |
15
|
difeq1d |
|- ( f e. ( NN0 ^m I ) -> ( ( ran f i^i NN0 ) \ { 0 } ) = ( ran f \ { 0 } ) ) |
| 17 |
11 16
|
eqtrid |
|- ( f e. ( NN0 ^m I ) -> ( NN i^i ran f ) = ( ran f \ { 0 } ) ) |
| 18 |
17
|
imaeq2d |
|- ( f e. ( NN0 ^m I ) -> ( `' f " ( NN i^i ran f ) ) = ( `' f " ( ran f \ { 0 } ) ) ) |
| 19 |
|
fimacnvinrn |
|- ( Fun f -> ( `' f " NN ) = ( `' f " ( NN i^i ran f ) ) ) |
| 20 |
5 19
|
syl |
|- ( f e. ( NN0 ^m I ) -> ( `' f " NN ) = ( `' f " ( NN i^i ran f ) ) ) |
| 21 |
|
id |
|- ( f e. ( NN0 ^m I ) -> f e. ( NN0 ^m I ) ) |
| 22 |
2
|
a1i |
|- ( f e. ( NN0 ^m I ) -> 0 e. NN0 ) |
| 23 |
|
supppreima |
|- ( ( Fun f /\ f e. ( NN0 ^m I ) /\ 0 e. NN0 ) -> ( f supp 0 ) = ( `' f " ( ran f \ { 0 } ) ) ) |
| 24 |
5 21 22 23
|
syl3anc |
|- ( f e. ( NN0 ^m I ) -> ( f supp 0 ) = ( `' f " ( ran f \ { 0 } ) ) ) |
| 25 |
18 20 24
|
3eqtr4rd |
|- ( f e. ( NN0 ^m I ) -> ( f supp 0 ) = ( `' f " NN ) ) |
| 26 |
25
|
eleq1d |
|- ( f e. ( NN0 ^m I ) -> ( ( f supp 0 ) e. Fin <-> ( `' f " NN ) e. Fin ) ) |
| 27 |
4 6 26
|
3bitr2d |
|- ( f e. ( NN0 ^m I ) -> ( f finSupp 0 <-> ( `' f " NN ) e. Fin ) ) |
| 28 |
27
|
rabbiia |
|- { f e. ( NN0 ^m I ) | f finSupp 0 } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 29 |
1 28
|
eqtri |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |