| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplvrpmga.1 |
⊢ 𝑆 = ( SymGrp ‘ 𝐼 ) |
| 2 |
|
mplvrpmga.2 |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
mplvrpmga.3 |
⊢ 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 4 |
|
mplvrpmga.4 |
⊢ 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 5 |
|
mplvrpmga.5 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
mplvrpmmhm.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝑀 ↦ ( 𝐷 𝐴 𝑓 ) ) |
| 7 |
|
mplvrpmmhm.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) |
| 8 |
|
mplvrpmmhm.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
|
mplvrpmmhm.2 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
7
|
fveq2i |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 11 |
3 10
|
eqtr4i |
⊢ 𝑀 = ( Base ‘ 𝑊 ) |
| 12 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 14 |
7 5 8
|
mplringd |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 15 |
14
|
ringgrpd |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 16 |
15
|
grpmndd |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
| 17 |
1 2 3 4 5
|
mplvrpmga |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) ) |
| 18 |
2
|
gaf |
⊢ ( 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) → 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 ) |
| 20 |
19
|
fovcld |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝑃 ∧ 𝑓 ∈ 𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 ) |
| 21 |
20
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝐷 ∈ 𝑃 ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 ) |
| 22 |
21
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) ∧ 𝐷 ∈ 𝑃 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 ) |
| 23 |
9 22
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 ) |
| 24 |
23 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑀 ⟶ 𝑀 ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 26 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 27 |
26
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑖 ∈ 𝑀 ) |
| 29 |
7 25 11 27 28
|
mplelf |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑖 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑖 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 31 |
30
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑖 Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑗 ∈ 𝑀 ) |
| 33 |
7 25 11 27 32
|
mplelf |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑗 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑗 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 35 |
34
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑗 Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 36 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 37 |
36
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V |
| 38 |
37
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 39 |
|
breq1 |
⊢ ( ℎ = ( 𝑥 ∘ 𝐷 ) → ( ℎ finSupp 0 ↔ ( 𝑥 ∘ 𝐷 ) finSupp 0 ) ) |
| 40 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 41 |
40
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 42 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 43 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐼 ∈ 𝑉 ) |
| 44 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ℕ0 ∈ V ) |
| 45 |
|
breq1 |
⊢ ( ℎ = 𝑥 → ( ℎ finSupp 0 ↔ 𝑥 finSupp 0 ) ) |
| 46 |
45
|
elrab |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↔ ( 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 𝑥 finSupp 0 ) ) |
| 47 |
46
|
biimpi |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → ( 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 𝑥 finSupp 0 ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∧ 𝑥 finSupp 0 ) ) |
| 49 |
48
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 50 |
43 44 49
|
elmaprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 51 |
50
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 52 |
1 2
|
symgbasf1o |
⊢ ( 𝐷 ∈ 𝑃 → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 53 |
9 52
|
syl |
⊢ ( 𝜑 → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 54 |
|
f1of |
⊢ ( 𝐷 : 𝐼 –1-1-onto→ 𝐼 → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 56 |
55
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 57 |
51 56
|
fcod |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) : 𝐼 ⟶ ℕ0 ) |
| 58 |
41 42 57
|
elmapdd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 59 |
48
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 finSupp 0 ) |
| 60 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐷 : 𝐼 –1-1-onto→ 𝐼 ) |
| 61 |
|
f1of1 |
⊢ ( 𝐷 : 𝐼 –1-1-onto→ 𝐼 → 𝐷 : 𝐼 –1-1→ 𝐼 ) |
| 62 |
60 61
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐷 : 𝐼 –1-1→ 𝐼 ) |
| 63 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 0 ∈ ℕ0 ) |
| 65 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 66 |
59 62 64 65
|
fsuppco |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) finSupp 0 ) |
| 67 |
66
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) finSupp 0 ) |
| 68 |
39 58 67
|
elrabd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 69 |
|
fnfvof |
⊢ ( ( ( 𝑖 Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∧ 𝑗 Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ∧ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ∧ ( 𝑥 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ) → ( ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) = ( ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ( +g ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 70 |
31 35 38 68 69
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) = ( ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ( +g ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 71 |
|
oveq2 |
⊢ ( 𝑓 = 𝑖 → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 𝑖 ) ) |
| 72 |
4
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 73 |
|
simpr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → 𝑓 = 𝑖 ) |
| 74 |
|
coeq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 76 |
73 75
|
fveq12d |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 77 |
76
|
mpteq2dv |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑖 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 79 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝐷 ∈ 𝑃 ) |
| 80 |
37
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ) |
| 81 |
80
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ∈ V ) |
| 82 |
72 78 79 28 81
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐷 𝐴 𝑖 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 83 |
71 82
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑓 = 𝑖 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 84 |
6 83 28 81
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 85 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ∈ V ) |
| 86 |
84 85
|
fvmpt2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) = ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 87 |
|
oveq2 |
⊢ ( 𝑓 = 𝑗 → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 𝑗 ) ) |
| 88 |
|
simpr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → 𝑓 = 𝑗 ) |
| 89 |
74
|
adantr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 90 |
88 89
|
fveq12d |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 91 |
90
|
mpteq2dv |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 92 |
91
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = 𝑗 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 93 |
80
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ∈ V ) |
| 94 |
72 92 79 32 93
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐷 𝐴 𝑗 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 95 |
87 94
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑓 = 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 96 |
6 95 32 93
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑗 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 97 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ∈ V ) |
| 98 |
96 97
|
fvmpt2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) = ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 99 |
86 98
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) = ( ( 𝑖 ‘ ( 𝑥 ∘ 𝐷 ) ) ( +g ‘ 𝑅 ) ( 𝑗 ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 100 |
70 99
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) = ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 101 |
100
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
| 102 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝐹 : 𝑀 ⟶ 𝑀 ) |
| 103 |
102 28
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑖 ) ∈ 𝑀 ) |
| 104 |
7 25 11 27 103
|
mplelf |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑖 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 105 |
104
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑖 ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 106 |
102 32
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑀 ) |
| 107 |
7 25 11 27 106
|
mplelf |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑗 ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) ) |
| 108 |
107
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ 𝑗 ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 109 |
80 105 108
|
offvalfv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( ( 𝐹 ‘ 𝑖 ) ∘f ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑗 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( ( 𝐹 ‘ 𝑖 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
| 110 |
101 109
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) = ( ( 𝐹 ‘ 𝑖 ) ∘f ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 111 |
|
oveq2 |
⊢ ( 𝑓 = ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) ) |
| 112 |
|
simpr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) → 𝑓 = ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) |
| 113 |
74
|
adantr |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 114 |
112 113
|
fveq12d |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 115 |
114
|
mpteq2dv |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 116 |
115
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 117 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → 𝑊 ∈ Grp ) |
| 118 |
11 12 117 28 32
|
grpcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ∈ 𝑀 ) |
| 119 |
80
|
mptexd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ∈ V ) |
| 120 |
72 116 79 118 119
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐷 𝐴 ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 121 |
111 120
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑓 = ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 122 |
6 121 118 119
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 123 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 124 |
7 11 123 12 28 32
|
mpladd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) = ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ) |
| 125 |
124
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) = ( ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 126 |
125
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 127 |
122 126
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( 𝑖 ∘f ( +g ‘ 𝑅 ) 𝑗 ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 128 |
7 11 123 12 103 106
|
mpladd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( ( 𝐹 ‘ 𝑖 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ∘f ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 129 |
110 127 128
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑀 ) ∧ 𝑗 ∈ 𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 130 |
129
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑊 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( +g ‘ 𝑊 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 131 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) → 𝑓 = ( 0g ‘ 𝑊 ) ) |
| 132 |
131
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 ( 0g ‘ 𝑊 ) ) ) |
| 133 |
4
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 134 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑓 = ( 0g ‘ 𝑊 ) ) |
| 135 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 136 |
8
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 137 |
7 27 135 13 5 136
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) = ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ) |
| 138 |
137
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 0g ‘ 𝑊 ) = ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ) |
| 139 |
134 138
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝑓 = ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ) |
| 140 |
74
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝐷 ) ) |
| 142 |
139 141
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) |
| 143 |
142
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) ) |
| 144 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 𝐷 : 𝐼 ⟶ 𝐼 ) |
| 145 |
50 144
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) : 𝐼 ⟶ ℕ0 ) |
| 146 |
44 43 145
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 147 |
39 146 66
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( 𝑥 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 148 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
| 149 |
148
|
fvconst2 |
⊢ ( ( 𝑥 ∘ 𝐷 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } → ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝑥 ∘ 𝐷 ) ) = ( 0g ‘ 𝑅 ) ) |
| 150 |
147 149
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝑥 ∘ 𝐷 ) ) = ( 0g ‘ 𝑅 ) ) |
| 151 |
150
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 0g ‘ 𝑅 ) ) ) |
| 152 |
|
fconstmpt |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 0g ‘ 𝑅 ) ) |
| 153 |
137 152
|
eqtrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 0g ‘ 𝑅 ) ) ) |
| 154 |
151 153
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 155 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝑥 ∘ 𝐷 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 156 |
143 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑑 = 𝐷 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 157 |
11 13
|
grpidcl |
⊢ ( 𝑊 ∈ Grp → ( 0g ‘ 𝑊 ) ∈ 𝑀 ) |
| 158 |
15 157
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ 𝑀 ) |
| 159 |
133 156 9 158 158
|
ovmpod |
⊢ ( 𝜑 → ( 𝐷 𝐴 ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) → ( 𝐷 𝐴 ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 161 |
132 160
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 = ( 0g ‘ 𝑊 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 0g ‘ 𝑊 ) ) |
| 162 |
6 161 158 158
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 163 |
11 11 12 12 13 13 16 16 24 130 162
|
ismhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑊 MndHom 𝑊 ) ) |