Metamath Proof Explorer


Theorem mplvrpmmhm

Description: The action of permuting variables in a multivariate polynomial is a monoid homomorphism. (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Hypotheses mplvrpmga.1 𝑆 = ( SymGrp ‘ 𝐼 )
mplvrpmga.2 𝑃 = ( Base ‘ 𝑆 )
mplvrpmga.3 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
mplvrpmga.4 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
mplvrpmga.5 ( 𝜑𝐼𝑉 )
mplvrpmmhm.f 𝐹 = ( 𝑓𝑀 ↦ ( 𝐷 𝐴 𝑓 ) )
mplvrpmmhm.w 𝑊 = ( 𝐼 mPoly 𝑅 )
mplvrpmmhm.1 ( 𝜑𝑅 ∈ Ring )
mplvrpmmhm.2 ( 𝜑𝐷𝑃 )
Assertion mplvrpmmhm ( 𝜑𝐹 ∈ ( 𝑊 MndHom 𝑊 ) )

Proof

Step Hyp Ref Expression
1 mplvrpmga.1 𝑆 = ( SymGrp ‘ 𝐼 )
2 mplvrpmga.2 𝑃 = ( Base ‘ 𝑆 )
3 mplvrpmga.3 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
4 mplvrpmga.4 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) )
5 mplvrpmga.5 ( 𝜑𝐼𝑉 )
6 mplvrpmmhm.f 𝐹 = ( 𝑓𝑀 ↦ ( 𝐷 𝐴 𝑓 ) )
7 mplvrpmmhm.w 𝑊 = ( 𝐼 mPoly 𝑅 )
8 mplvrpmmhm.1 ( 𝜑𝑅 ∈ Ring )
9 mplvrpmmhm.2 ( 𝜑𝐷𝑃 )
10 7 fveq2i ( Base ‘ 𝑊 ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
11 3 10 eqtr4i 𝑀 = ( Base ‘ 𝑊 )
12 eqid ( +g𝑊 ) = ( +g𝑊 )
13 eqid ( 0g𝑊 ) = ( 0g𝑊 )
14 7 5 8 mplringd ( 𝜑𝑊 ∈ Ring )
15 14 ringgrpd ( 𝜑𝑊 ∈ Grp )
16 15 grpmndd ( 𝜑𝑊 ∈ Mnd )
17 1 2 3 4 5 mplvrpmga ( 𝜑𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) )
18 2 gaf ( 𝐴 ∈ ( 𝑆 GrpAct 𝑀 ) → 𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 )
19 17 18 syl ( 𝜑𝐴 : ( 𝑃 × 𝑀 ) ⟶ 𝑀 )
20 19 fovcld ( ( 𝜑𝐷𝑃𝑓𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 )
21 20 3expa ( ( ( 𝜑𝐷𝑃 ) ∧ 𝑓𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 )
22 21 an32s ( ( ( 𝜑𝑓𝑀 ) ∧ 𝐷𝑃 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 )
23 9 22 mpidan ( ( 𝜑𝑓𝑀 ) → ( 𝐷 𝐴 𝑓 ) ∈ 𝑀 )
24 23 6 fmptd ( 𝜑𝐹 : 𝑀𝑀 )
25 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
26 eqid { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
27 26 psrbasfsupp { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
28 simplr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑖𝑀 )
29 7 25 11 27 28 mplelf ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑖 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
30 29 adantr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑖 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
31 30 ffnd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑖 Fn { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
32 simpr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑗𝑀 )
33 7 25 11 27 32 mplelf ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑗 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
34 33 adantr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑗 : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
35 34 ffnd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑗 Fn { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
36 ovex ( ℕ0m 𝐼 ) ∈ V
37 36 rabex { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V
38 37 a1i ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V )
39 breq1 ( = ( 𝑥𝐷 ) → ( finSupp 0 ↔ ( 𝑥𝐷 ) finSupp 0 ) )
40 nn0ex 0 ∈ V
41 40 a1i ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ℕ0 ∈ V )
42 5 ad3antrrr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐼𝑉 )
43 5 adantr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐼𝑉 )
44 40 a1i ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ℕ0 ∈ V )
45 breq1 ( = 𝑥 → ( finSupp 0 ↔ 𝑥 finSupp 0 ) )
46 45 elrab ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↔ ( 𝑥 ∈ ( ℕ0m 𝐼 ) ∧ 𝑥 finSupp 0 ) )
47 46 biimpi ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } → ( 𝑥 ∈ ( ℕ0m 𝐼 ) ∧ 𝑥 finSupp 0 ) )
48 47 adantl ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥 ∈ ( ℕ0m 𝐼 ) ∧ 𝑥 finSupp 0 ) )
49 48 simpld ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ ( ℕ0m 𝐼 ) )
50 43 44 49 elmaprd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
51 50 ad4ant14 ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
52 1 2 symgbasf1o ( 𝐷𝑃𝐷 : 𝐼1-1-onto𝐼 )
53 9 52 syl ( 𝜑𝐷 : 𝐼1-1-onto𝐼 )
54 f1of ( 𝐷 : 𝐼1-1-onto𝐼𝐷 : 𝐼𝐼 )
55 53 54 syl ( 𝜑𝐷 : 𝐼𝐼 )
56 55 ad3antrrr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐷 : 𝐼𝐼 )
57 51 56 fcod ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) : 𝐼 ⟶ ℕ0 )
58 41 42 57 elmapdd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) ∈ ( ℕ0m 𝐼 ) )
59 48 simprd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 finSupp 0 )
60 53 adantr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐷 : 𝐼1-1-onto𝐼 )
61 f1of1 ( 𝐷 : 𝐼1-1-onto𝐼𝐷 : 𝐼1-1𝐼 )
62 60 61 syl ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐷 : 𝐼1-1𝐼 )
63 0nn0 0 ∈ ℕ0
64 63 a1i ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 0 ∈ ℕ0 )
65 simpr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
66 59 62 64 65 fsuppco ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) finSupp 0 )
67 66 ad4ant14 ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) finSupp 0 )
68 39 58 67 elrabd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
69 fnfvof ( ( ( 𝑖 Fn { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∧ 𝑗 Fn { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ∧ ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V ∧ ( 𝑥𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) ) → ( ( 𝑖f ( +g𝑅 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) = ( ( 𝑖 ‘ ( 𝑥𝐷 ) ) ( +g𝑅 ) ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
70 31 35 38 68 69 syl22anc ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 𝑖f ( +g𝑅 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) = ( ( 𝑖 ‘ ( 𝑥𝐷 ) ) ( +g𝑅 ) ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
71 oveq2 ( 𝑓 = 𝑖 → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 𝑖 ) )
72 4 a1i ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
73 simpr ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → 𝑓 = 𝑖 )
74 coeq2 ( 𝑑 = 𝐷 → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
75 74 adantr ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
76 73 75 fveq12d ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑖 ‘ ( 𝑥𝐷 ) ) )
77 76 mpteq2dv ( ( 𝑑 = 𝐷𝑓 = 𝑖 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥𝐷 ) ) ) )
78 77 adantl ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = 𝑖 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥𝐷 ) ) ) )
79 9 ad2antrr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝐷𝑃 )
80 37 a1i ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ∈ V )
81 80 mptexd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥𝐷 ) ) ) ∈ V )
82 72 78 79 28 81 ovmpod ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐷 𝐴 𝑖 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥𝐷 ) ) ) )
83 71 82 sylan9eqr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑓 = 𝑖 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥𝐷 ) ) ) )
84 6 83 28 81 fvmptd2 ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑖 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑖 ‘ ( 𝑥𝐷 ) ) ) )
85 fvexd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑖 ‘ ( 𝑥𝐷 ) ) ∈ V )
86 84 85 fvmpt2d ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 𝐹𝑖 ) ‘ 𝑥 ) = ( 𝑖 ‘ ( 𝑥𝐷 ) ) )
87 oveq2 ( 𝑓 = 𝑗 → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 𝑗 ) )
88 simpr ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → 𝑓 = 𝑗 )
89 74 adantr ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
90 88 89 fveq12d ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( 𝑗 ‘ ( 𝑥𝐷 ) ) )
91 90 mpteq2dv ( ( 𝑑 = 𝐷𝑓 = 𝑗 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
92 91 adantl ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = 𝑗 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
93 80 mptexd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) ∈ V )
94 72 92 79 32 93 ovmpod ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐷 𝐴 𝑗 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
95 87 94 sylan9eqr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑓 = 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
96 6 95 32 93 fvmptd2 ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑗 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
97 fvexd ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑗 ‘ ( 𝑥𝐷 ) ) ∈ V )
98 96 97 fvmpt2d ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 𝐹𝑗 ) ‘ 𝑥 ) = ( 𝑗 ‘ ( 𝑥𝐷 ) ) )
99 86 98 oveq12d ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( ( 𝐹𝑖 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) = ( ( 𝑖 ‘ ( 𝑥𝐷 ) ) ( +g𝑅 ) ( 𝑗 ‘ ( 𝑥𝐷 ) ) ) )
100 70 99 eqtr4d ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( 𝑖f ( +g𝑅 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) = ( ( ( 𝐹𝑖 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
101 100 mpteq2dva ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖f ( +g𝑅 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( ( 𝐹𝑖 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) ) )
102 24 ad2antrr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝐹 : 𝑀𝑀 )
103 102 28 ffvelcdmd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑖 ) ∈ 𝑀 )
104 7 25 11 27 103 mplelf ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑖 ) : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
105 104 ffnd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑖 ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
106 102 32 ffvelcdmd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑗 ) ∈ 𝑀 )
107 7 25 11 27 106 mplelf ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑗 ) : { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ⟶ ( Base ‘ 𝑅 ) )
108 107 ffnd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹𝑗 ) Fn { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
109 80 105 108 offvalfv ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( ( 𝐹𝑖 ) ∘f ( +g𝑅 ) ( 𝐹𝑗 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( ( 𝐹𝑖 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) ) )
110 101 109 eqtr4d ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖f ( +g𝑅 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) = ( ( 𝐹𝑖 ) ∘f ( +g𝑅 ) ( 𝐹𝑗 ) ) )
111 oveq2 ( 𝑓 = ( 𝑖 ( +g𝑊 ) 𝑗 ) → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 ( 𝑖 ( +g𝑊 ) 𝑗 ) ) )
112 simpr ( ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( +g𝑊 ) 𝑗 ) ) → 𝑓 = ( 𝑖 ( +g𝑊 ) 𝑗 ) )
113 74 adantr ( ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( +g𝑊 ) 𝑗 ) ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
114 112 113 fveq12d ( ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( +g𝑊 ) 𝑗 ) ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) )
115 114 mpteq2dv ( ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( +g𝑊 ) 𝑗 ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) )
116 115 adantl ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ ( 𝑑 = 𝐷𝑓 = ( 𝑖 ( +g𝑊 ) 𝑗 ) ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) )
117 15 ad2antrr ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → 𝑊 ∈ Grp )
118 11 12 117 28 32 grpcld ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑖 ( +g𝑊 ) 𝑗 ) ∈ 𝑀 )
119 80 mptexd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) ∈ V )
120 72 116 79 118 119 ovmpod ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐷 𝐴 ( 𝑖 ( +g𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) )
121 111 120 sylan9eqr ( ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) ∧ 𝑓 = ( 𝑖 ( +g𝑊 ) 𝑗 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) )
122 6 121 118 119 fvmptd2 ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) )
123 eqid ( +g𝑅 ) = ( +g𝑅 )
124 7 11 123 12 28 32 mpladd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑖 ( +g𝑊 ) 𝑗 ) = ( 𝑖f ( +g𝑅 ) 𝑗 ) )
125 124 fveq1d ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) = ( ( 𝑖f ( +g𝑅 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) )
126 125 mpteq2dv ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖 ( +g𝑊 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖f ( +g𝑅 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) )
127 122 126 eqtrd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g𝑊 ) 𝑗 ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( 𝑖f ( +g𝑅 ) 𝑗 ) ‘ ( 𝑥𝐷 ) ) ) )
128 7 11 123 12 103 106 mpladd ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( ( 𝐹𝑖 ) ( +g𝑊 ) ( 𝐹𝑗 ) ) = ( ( 𝐹𝑖 ) ∘f ( +g𝑅 ) ( 𝐹𝑗 ) ) )
129 110 127 128 3eqtr4d ( ( ( 𝜑𝑖𝑀 ) ∧ 𝑗𝑀 ) → ( 𝐹 ‘ ( 𝑖 ( +g𝑊 ) 𝑗 ) ) = ( ( 𝐹𝑖 ) ( +g𝑊 ) ( 𝐹𝑗 ) ) )
130 129 anasss ( ( 𝜑 ∧ ( 𝑖𝑀𝑗𝑀 ) ) → ( 𝐹 ‘ ( 𝑖 ( +g𝑊 ) 𝑗 ) ) = ( ( 𝐹𝑖 ) ( +g𝑊 ) ( 𝐹𝑗 ) ) )
131 simpr ( ( 𝜑𝑓 = ( 0g𝑊 ) ) → 𝑓 = ( 0g𝑊 ) )
132 131 oveq2d ( ( 𝜑𝑓 = ( 0g𝑊 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 𝐷 𝐴 ( 0g𝑊 ) ) )
133 4 a1i ( 𝜑𝐴 = ( 𝑑𝑃 , 𝑓𝑀 ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) ) )
134 simplrr ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑓 = ( 0g𝑊 ) )
135 eqid ( 0g𝑅 ) = ( 0g𝑅 )
136 8 ringgrpd ( 𝜑𝑅 ∈ Grp )
137 7 27 135 13 5 136 mpl0 ( 𝜑 → ( 0g𝑊 ) = ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) )
138 137 ad2antrr ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 0g𝑊 ) = ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) )
139 134 138 eqtrd ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝑓 = ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) )
140 74 ad2antrl ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
141 140 adantr ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝑑 ) = ( 𝑥𝐷 ) )
142 139 141 fveq12d ( ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) ∧ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑓 ‘ ( 𝑥𝑑 ) ) = ( ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) ‘ ( 𝑥𝐷 ) ) )
143 142 mpteq2dva ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) ‘ ( 𝑥𝐷 ) ) ) )
144 55 adantr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → 𝐷 : 𝐼𝐼 )
145 50 144 fcod ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) : 𝐼 ⟶ ℕ0 )
146 44 43 145 elmapdd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) ∈ ( ℕ0m 𝐼 ) )
147 39 146 66 elrabd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( 𝑥𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
148 fvex ( 0g𝑅 ) ∈ V
149 148 fvconst2 ( ( 𝑥𝐷 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } → ( ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) ‘ ( 𝑥𝐷 ) ) = ( 0g𝑅 ) )
150 147 149 syl ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ) → ( ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) ‘ ( 𝑥𝐷 ) ) = ( 0g𝑅 ) )
151 150 mpteq2dva ( 𝜑 → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) ‘ ( 𝑥𝐷 ) ) ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 0g𝑅 ) ) )
152 fconstmpt ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 0g𝑅 ) )
153 137 152 eqtrdi ( 𝜑 → ( 0g𝑊 ) = ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 0g𝑅 ) ) )
154 151 153 eqtr4d ( 𝜑 → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) ‘ ( 𝑥𝐷 ) ) ) = ( 0g𝑊 ) )
155 154 adantr ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( ( { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } × { ( 0g𝑅 ) } ) ‘ ( 𝑥𝐷 ) ) ) = ( 0g𝑊 ) )
156 143 155 eqtrd ( ( 𝜑 ∧ ( 𝑑 = 𝐷𝑓 = ( 0g𝑊 ) ) ) → ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥𝑑 ) ) ) = ( 0g𝑊 ) )
157 11 13 grpidcl ( 𝑊 ∈ Grp → ( 0g𝑊 ) ∈ 𝑀 )
158 15 157 syl ( 𝜑 → ( 0g𝑊 ) ∈ 𝑀 )
159 133 156 9 158 158 ovmpod ( 𝜑 → ( 𝐷 𝐴 ( 0g𝑊 ) ) = ( 0g𝑊 ) )
160 159 adantr ( ( 𝜑𝑓 = ( 0g𝑊 ) ) → ( 𝐷 𝐴 ( 0g𝑊 ) ) = ( 0g𝑊 ) )
161 132 160 eqtrd ( ( 𝜑𝑓 = ( 0g𝑊 ) ) → ( 𝐷 𝐴 𝑓 ) = ( 0g𝑊 ) )
162 6 161 158 158 fvmptd2 ( 𝜑 → ( 𝐹 ‘ ( 0g𝑊 ) ) = ( 0g𝑊 ) )
163 11 11 12 12 13 13 16 16 24 130 162 ismhmd ( 𝜑𝐹 ∈ ( 𝑊 MndHom 𝑊 ) )