Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptd.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ) |
2 |
|
fvmptd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) |
3 |
|
fvmptd.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
4 |
|
fvmptd.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
5 |
|
fvmptdf.p |
⊢ Ⅎ 𝑥 𝜑 |
6 |
|
fvmptdf.a |
⊢ Ⅎ 𝑥 𝐴 |
7 |
|
fvmptdf.c |
⊢ Ⅎ 𝑥 𝐶 |
8 |
1
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
10 |
9
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
11 |
7
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐶 ) |
12 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
14 |
6
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = 𝐴 |
15 |
5 14
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 = 𝐴 ) |
16 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → Ⅎ 𝑥 𝐶 ) |
17 |
|
vex |
⊢ 𝑦 ∈ V |
18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝑦 ∈ V ) |
19 |
|
eqtr |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑦 = 𝐴 ) → 𝑥 = 𝐴 ) |
20 |
19
|
ancoms |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝐴 ) |
21 |
20 2
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝐴 ∧ 𝑥 = 𝑦 ) ) → 𝐵 = 𝐶 ) |
22 |
21
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 = 𝐴 ) ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) |
23 |
15 16 18 22
|
csbiedf |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
24 |
5 10 11 3 13 23
|
csbie2df |
⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
25 |
24 4
|
eqeltrd |
⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
26 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
27 |
26
|
fvmpts |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
28 |
3 25 27
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
29 |
8 28 24
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |