Metamath Proof Explorer


Theorem fvmptdf

Description: Deduction version of fvmptd using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024)

Ref Expression
Hypotheses fvmptd.1 ( 𝜑𝐹 = ( 𝑥𝐷𝐵 ) )
fvmptd.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
fvmptd.3 ( 𝜑𝐴𝐷 )
fvmptd.4 ( 𝜑𝐶𝑉 )
fvmptdf.p 𝑥 𝜑
fvmptdf.a 𝑥 𝐴
fvmptdf.c 𝑥 𝐶
Assertion fvmptdf ( 𝜑 → ( 𝐹𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvmptd.1 ( 𝜑𝐹 = ( 𝑥𝐷𝐵 ) )
2 fvmptd.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
3 fvmptd.3 ( 𝜑𝐴𝐷 )
4 fvmptd.4 ( 𝜑𝐶𝑉 )
5 fvmptdf.p 𝑥 𝜑
6 fvmptdf.a 𝑥 𝐴
7 fvmptdf.c 𝑥 𝐶
8 1 fveq1d ( 𝜑 → ( 𝐹𝐴 ) = ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) )
9 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
10 9 a1i ( 𝜑 𝑥 𝑦 / 𝑥 𝐵 )
11 7 a1i ( 𝜑 𝑥 𝐶 )
12 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
13 12 adantl ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝑦 / 𝑥 𝐵 )
14 6 nfeq2 𝑥 𝑦 = 𝐴
15 5 14 nfan 𝑥 ( 𝜑𝑦 = 𝐴 )
16 7 a1i ( ( 𝜑𝑦 = 𝐴 ) → 𝑥 𝐶 )
17 vex 𝑦 ∈ V
18 17 a1i ( ( 𝜑𝑦 = 𝐴 ) → 𝑦 ∈ V )
19 eqtr ( ( 𝑥 = 𝑦𝑦 = 𝐴 ) → 𝑥 = 𝐴 )
20 19 ancoms ( ( 𝑦 = 𝐴𝑥 = 𝑦 ) → 𝑥 = 𝐴 )
21 20 2 sylan2 ( ( 𝜑 ∧ ( 𝑦 = 𝐴𝑥 = 𝑦 ) ) → 𝐵 = 𝐶 )
22 21 anassrs ( ( ( 𝜑𝑦 = 𝐴 ) ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
23 15 16 18 22 csbiedf ( ( 𝜑𝑦 = 𝐴 ) → 𝑦 / 𝑥 𝐵 = 𝐶 )
24 5 10 11 3 13 23 csbie2df ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐶 )
25 24 4 eqeltrd ( 𝜑 𝐴 / 𝑥 𝐵𝑉 )
26 eqid ( 𝑥𝐷𝐵 ) = ( 𝑥𝐷𝐵 )
27 26 fvmpts ( ( 𝐴𝐷 𝐴 / 𝑥 𝐵𝑉 ) → ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) = 𝐴 / 𝑥 𝐵 )
28 3 25 27 syl2anc ( 𝜑 → ( ( 𝑥𝐷𝐵 ) ‘ 𝐴 ) = 𝐴 / 𝑥 𝐵 )
29 8 28 24 3eqtrd ( 𝜑 → ( 𝐹𝐴 ) = 𝐶 )